answersLogoWhite

0

Acceleration is directly proportional to force and inversely proportional to mass. This means that the greater the force applied to an object, the greater its acceleration will be. Conversely, the greater the mass of an object, the lower its acceleration will be for a given force.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between mass, force, and acceleration in physics?

In physics, the relationship between mass, force, and acceleration is described by Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In other words, the greater the force applied to an object, the greater its acceleration will be, and the greater the mass of an object, the smaller its acceleration will be for a given force.


What relates force mass and acceleration?

The relationship between force, mass, and acceleration is described by Newton's second law of motion: F = ma. This equation states that the force acting on an object is directly proportional to its mass and the acceleration produced. In other words, the greater the force applied to an object, the greater its acceleration will be, assuming a constant mass.


What is the relationship between force applied to mass of an object resulting acceleration?

The relationship between force applied to an object and its mass is given by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. This can be mathematically represented as F = ma, where F is the force applied, m is the mass of the object, and a is the resulting acceleration.


What two variables is acceleration dependent on and what is the relationship between these variables and acceleration?

Acceleration is dependent on both the force acting on an object and the mass of the object. The relationship between force, mass, and acceleration is described by Newton's second law of motion, which states that acceleration is directly proportional to the net force acting on an object and inversely proportional to its mass. Mathematically, the relationship can be represented as a = F/m, where a is acceleration, F is force, and m is mass.


What is the type of relationship between acceleration and force?

The relationship between acceleration and force is direct and proportional. This means that an increase in force applied to an object will result in a corresponding increase in acceleration, assuming the mass of the object remains constant.

Related Questions

What is the relationship between acceleration and mass?

well the relationship between mass and force is..........*relationship... Force=mass x acceleration


What is the relationship existing between acceleration and mass?

Acceleration is force divided by mass.


What is the relationship between the acceleration of a particle the force that acts on the particle and the mass of the particle?

Acceleration = force/mass


What relationship exist between force and acceleration?

F=m•A Force=mass•acceleration


Describe the relationship between force and acceleration?

Force= mass x acceleration. Therefore: Force is directly proportional to acceleration.


What is the mathematical relationship between force and acceleration?

Force in Newtons = mass in kilograms * acceleration ( can be gravitational acceleration )F = maThe mathematical relationship between force and acceleration is directly proportional.


What is the relationship between mass, force, and acceleration in physics?

In physics, the relationship between mass, force, and acceleration is described by Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In other words, the greater the force applied to an object, the greater its acceleration will be, and the greater the mass of an object, the smaller its acceleration will be for a given force.


How is the relationship of acceleration and to mass and force?

Force F = mass x Acceleration.


What is the relationship between mass acceleration and net force?

Fnet=ma


What relates force mass and acceleration?

The relationship between force, mass, and acceleration is described by Newton's second law of motion: F = ma. This equation states that the force acting on an object is directly proportional to its mass and the acceleration produced. In other words, the greater the force applied to an object, the greater its acceleration will be, assuming a constant mass.


What is the relationship between force applied to mass of an object resulting acceleration?

The relationship between force applied to an object and its mass is given by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. This can be mathematically represented as F = ma, where F is the force applied, m is the mass of the object, and a is the resulting acceleration.


What two variables is acceleration dependent on and what is the relationship between these variables and acceleration?

Acceleration is dependent on both the force acting on an object and the mass of the object. The relationship between force, mass, and acceleration is described by Newton's second law of motion, which states that acceleration is directly proportional to the net force acting on an object and inversely proportional to its mass. Mathematically, the relationship can be represented as a = F/m, where a is acceleration, F is force, and m is mass.