answersLogoWhite

0

In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Continue Learning about Physics

If the resistance in a circuit is doubled while the voltage remains constant the current does what?

If resistance is doubled in a circuit with constant voltage, Ohm's Law (V=IR) states that current (I) would be halved since the voltage is constant. This is because the relationship between resistance and current is inversely proportional.


What is the relationship between current and voltage in an electrical circuit?

The relationship between current and voltage in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. In simpler terms, as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the relationship between voltage and current in an electrical circuit?

The relationship between voltage and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. This means that as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the relationship between resistance and current in an electrical circuit?

The relationship between resistance and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.


What is the relationship between current and resistance in an electrical circuit?

In an electrical circuit, the relationship between current and resistance is described by Ohm's Law. This law states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.

Related Questions

What is the Relationship between resistance and inductance in a RL circuit?

What is the Relationship between resistance and inductance in a RL circuit?


If the resistance in a circuit is doubled while the voltage remains constant the current does what?

If resistance is doubled in a circuit with constant voltage, Ohm's Law (V=IR) states that current (I) would be halved since the voltage is constant. This is because the relationship between resistance and current is inversely proportional.


What is the relationship between resistance and capacitance in a clc circuit?

The relationship between resistance and capacitance in a clc circuit is the capacitive reactance given by XC.


What is the relationship between current and voltage in an electrical circuit?

The relationship between current and voltage in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. In simpler terms, as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the relationship between voltage and current in an electrical circuit?

The relationship between voltage and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. This means that as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the relationship between resistance and current in an electrical circuit?

The relationship between resistance and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.


Why isn't resistance constant?

If measuring resistance of materials or resistors by themselves(not soldered into a circuit board) resistance is constant. If measuring resistance of a circuit then it could fluctuate with the components functioning in the circuit.


Does voltage versus current indicate a linear relationship?

Yes, provided the resistance is constant. If the resistance varies with current, then you have a non-linear circuit


What is the relationship between current and resistance in an electrical circuit?

In an electrical circuit, the relationship between current and resistance is described by Ohm's Law. This law states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.


What is the relationship between power (P), current (i), and resistance (r) in an electrical circuit?

The relationship between power (P), current (i), and resistance (r) in an electrical circuit is described by the formula P i2 r. This means that power is directly proportional to the square of the current and the resistance in the circuit.


What is the relationship between capacitor resistance and the overall performance of an electronic circuit?

The relationship between capacitor resistance and the overall performance of an electronic circuit is that the resistance of a capacitor affects the charging and discharging times of the capacitor, which can impact the timing and stability of the circuit. Higher resistance can lead to slower charging and discharging, potentially affecting the circuit's functionality and efficiency.


What is the relationship between voltage and resistance in an electrical circuit?

In an electrical circuit, the relationship between voltage and resistance is described by Ohm's Law. This law states that the voltage across a circuit is directly proportional to the resistance in the circuit. In other words, as resistance increases, the voltage required to maintain the same current also increases. Conversely, if resistance decreases, the voltage required to maintain the same current decreases.