In an electrical system where current is equal to the charge multiplied by the velocity, the relationship is that the current flowing through the system is directly proportional to both the amount of charge and the velocity at which the charge is moving. This means that as either the charge or the velocity increases, the current flowing through the system will also increase.
In the context of the load-velocity relationship, the relationship between load and velocity is inverse. This means that as the load increases, the velocity at which the load can be moved decreases, and vice versa.
When the electric field equals the velocity multiplied by the magnetic field, it indicates a special relationship known as electromagnetic induction. This relationship shows how a changing magnetic field can create an electric field, and vice versa, according to Faraday's law of electromagnetic induction.
The equation velocity equals wavelength multiplied by frequency is called the wave equation. It describes the relationship between the speed of a wave, its wavelength, and its frequency.
The relationship between acceleration and the derivative of velocity is that acceleration is the rate of change of velocity. In other words, acceleration is the derivative of velocity with respect to time.
The relationship between velocity and the derivative of position is that velocity is the derivative of position with respect to time. In other words, velocity is the rate of change of position over time.
In the context of the load-velocity relationship, the relationship between load and velocity is inverse. This means that as the load increases, the velocity at which the load can be moved decreases, and vice versa.
When the electric field equals the velocity multiplied by the magnetic field, it indicates a special relationship known as electromagnetic induction. This relationship shows how a changing magnetic field can create an electric field, and vice versa, according to Faraday's law of electromagnetic induction.
The equation velocity equals wavelength multiplied by frequency is called the wave equation. It describes the relationship between the speed of a wave, its wavelength, and its frequency.
The relationship between acceleration and the derivative of velocity is that acceleration is the rate of change of velocity. In other words, acceleration is the derivative of velocity with respect to time.
The relationship between velocity and the derivative of position is that velocity is the derivative of position with respect to time. In other words, velocity is the rate of change of position over time.
In a Newtonian fluid, shear stress is directly proportional to the velocity gradient. This relationship is described by Newton's law of viscosity, which states that the shear stress (τ) is equal to the viscosity (μ) of the fluid multiplied by the velocity gradient (du/dy). Mathematically, this relationship can be represented as τ = μ*(du/dy).
The relationship between volts and amps in an electrical circuit is defined by Ohm's Law, which states that voltage (V) is equal to the current (I) multiplied by the resistance (R) in the circuit. In other words, volts per amp is a measure of resistance in the circuit.
No, the relationship between velocity and height on an incline is not linear. Velocity is influenced by factors like acceleration due to gravity and friction, making it a non-linear relationship.
sorry '=
Angular velocity is the rate of change of an object's angular position with respect to time, while linear velocity is the rate of change of an object's linear position with respect to time. The relationship between angular velocity and linear velocity depends on the distance of the object from the axis of rotation. For an object rotating around a fixed axis, the linear velocity is equal to the angular velocity multiplied by the radius of the rotation.
The relationship between starting length and initial velocity of shortening is typically an inverse relationship. This means that as the starting length increases, the initial velocity of shortening decreases. This relationship is governed by the length-tension relationship of muscle fibers.
Acceleration is the rate at which velocity changes and the direction of the change.