answersLogoWhite

0

The voltage equation and the electric field in a system are related through the equation: V E d, where V is the voltage, E is the electric field, and d is the distance between the points in the system. This equation shows that the voltage is directly proportional to the electric field strength and the distance between the points in the system.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the electric field equation and voltage in an electric field?

The electric field equation describes the strength and direction of the electric field at a point in space. Voltage, on the other hand, is a measure of the electric potential difference between two points in an electric field. The relationship between the electric field equation and voltage is that the electric field is related to the gradient of the voltage. In other words, the electric field is the negative gradient of the voltage.


What is the relationship between potential energy and the product of charge and voltage in an electric field, as represented by the equation potential energy qv?

The relationship between potential energy and the product of charge and voltage in an electric field is represented by the equation potential energy qv. This equation shows that the potential energy of a charged object in an electric field is determined by the product of the charge (q) and the voltage (v) in that field.


What is the relationship between voltage (e), electric potential difference (v), and distance (d) in an electric field?

In an electric field, the relationship between voltage (e), electric potential difference (v), and distance (d) is described by the equation v e d. This means that the electric potential difference (v) between two points in an electric field is equal to the product of the electric field strength (e) and the distance (d) between the points.


What is the relationship between power, current, and voltage in an electrical circuit?

In an electrical circuit, power is the product of current (the flow of electric charge) and voltage (the force that drives the current). The relationship between power, current, and voltage is described by the equation P I x V, where P is power, I is current, and V is voltage. This equation shows that power increases when either current or voltage increases in a circuit.


What is the relationship between voltage and the electric field in a given system?

In a given system, the relationship between voltage and the electric field is that the electric field is directly proportional to the voltage. This means that as the voltage increases, the electric field strength also increases. Conversely, if the voltage decreases, the electric field strength will also decrease.

Related Questions

What is the relationship between the electric field equation and voltage in an electric field?

The electric field equation describes the strength and direction of the electric field at a point in space. Voltage, on the other hand, is a measure of the electric potential difference between two points in an electric field. The relationship between the electric field equation and voltage is that the electric field is related to the gradient of the voltage. In other words, the electric field is the negative gradient of the voltage.


What is the relationship between potential energy and the product of charge and voltage in an electric field, as represented by the equation potential energy qv?

The relationship between potential energy and the product of charge and voltage in an electric field is represented by the equation potential energy qv. This equation shows that the potential energy of a charged object in an electric field is determined by the product of the charge (q) and the voltage (v) in that field.


What is the relationship between voltage (e), electric potential difference (v), and distance (d) in an electric field?

In an electric field, the relationship between voltage (e), electric potential difference (v), and distance (d) is described by the equation v e d. This means that the electric potential difference (v) between two points in an electric field is equal to the product of the electric field strength (e) and the distance (d) between the points.


What is the relationship between power, current, and voltage in an electrical circuit?

In an electrical circuit, power is the product of current (the flow of electric charge) and voltage (the force that drives the current). The relationship between power, current, and voltage is described by the equation P I x V, where P is power, I is current, and V is voltage. This equation shows that power increases when either current or voltage increases in a circuit.


What is the relationship between voltage and the electric field in a given system?

In a given system, the relationship between voltage and the electric field is that the electric field is directly proportional to the voltage. This means that as the voltage increases, the electric field strength also increases. Conversely, if the voltage decreases, the electric field strength will also decrease.


What is the relationship between electric potential, voltage, and the concept of electric potential energy?

Electric potential, also known as voltage, is a measure of the electric potential energy per unit charge at a point in an electric field. The relationship between electric potential, voltage, and electric potential energy is that electric potential is the potential energy per unit charge, and voltage is the difference in electric potential between two points. Electric potential energy is the energy stored in a system of charges due to their positions in an electric field, and it is related to the electric potential by the equation: Electric Potential Energy Charge x Electric Potential.


What is the equation that relates voltage and electric field in a given system?

The equation that relates voltage (V) and electric field (E) in a given system is V E d, where V is the voltage, E is the electric field, and d is the distance between the points where the voltage is measured.


What is the relationship between voltage and electric potential energy difference?

Voltage is a measure of the electric potential energy difference between two points in an electric field. The greater the voltage, the greater the electric potential energy difference between the two points.


What is the relationship between voltage and electric field in a given electrical system?

In a given electrical system, the relationship between voltage and electric field is that voltage is the measure of electric potential difference between two points in the system, while electric field is the force per unit charge experienced by a charge at a point in the system. The electric field is directly proportional to the voltage in the system.


What is the electric field voltage equation and how is it used to calculate the electric field strength at a given point in space?

The electric field voltage equation is E V/d, where E is the electric field strength, V is the voltage, and d is the distance between the charges. To calculate the electric field strength at a given point in space, you can use this equation by plugging in the values of voltage and distance to find the electric field strength.


What is the relationship between current, voltage, and resistance in an electrical circuit?

In an electrical circuit, current is the flow of electric charge, voltage is the force that drives the current, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between current (I), voltage (V), and resistance (R) is given by the equation V I R, where voltage equals current multiplied by resistance.


What is the relationship between voltage, current, and resistance in an electrical circuit?

In an electrical circuit, voltage is the force that pushes electric current through a conductor. Current is the flow of electric charge, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between voltage (V), current (I), and resistance (R) is given by the equation V I R. This means that the voltage across a circuit is equal to the current flowing through it multiplied by the resistance of the circuit.

Trending Questions
What is the temperature in Fahrenheit for -125 celsius? An isolated system is one which is not subject to any what force? Can we make more helium through any scientific processes or methods? What consists of vibrating electric and magnetic fields that move through space at the speed of light? How can mechanical energy change into chemical energy? What do they mean when they say dynamically testing of equipment? What causes the electrons to move in the electromagnetic induction animation? An object traveling a circular path of radius 5 m at constant speed experiences an acceleration of 3 ms2. If the radius of its path is increased to 10 m but its speed remains the same what is its acce? If you stand near a hot toaster why can you feel the heat? What colour is cyan? What experiment did Newton conduct to demonstrate his first law of motion? Will he be able to fix the broken television Circle the subject of this sentence? Where in Wisconsin is nuclear power used? What state of matter that is thought to exisits at extremely low temperatures? Does energy falls under the physical science? Which form of frequency spectrum best describes the method of energy transfer that most solar energy takes as it comes into earths atmosphere? Is a window a conductor? What determines the precision of a calculated result based on measurements? What determines the direction of net movement across a cellmembrane? If water has specific gravity 62.4 pounds per cubic feet what is the specific gravity of ice?