kenetic energy
A catapult has potential energy stored in its elastic materials or tension system. When the catapult is released, this potential energy is converted into kinetic energy, causing the projectile to launch forward.
The kind of potential energy in a catapult is known as elastic potential energy. The potential energy that is in the catapult is used when you activate the catapult and the rock (or any kind of ammo) fires.
The energy in a catapult is stored as potential energy, specifically elastic potential energy. This energy is stored in the stretched material of the catapult, such as a spring or elastic band, ready to be converted into kinetic energy when the catapult is released.
The main energy transfer for a catapult is from the potential energy stored in the tension of the catapult arm or springs to the kinetic energy of the projectile as it is launched.
When a catapult is released, potential energy is converted into kinetic energy. The stored potential energy in the tension of the catapult's arm is released, propelling the object forward with kinetic energy.
A catapult has potential energy stored in its elastic materials or tension system. When the catapult is released, this potential energy is converted into kinetic energy, causing the projectile to launch forward.
The kind of potential energy in a catapult is known as elastic potential energy. The potential energy that is in the catapult is used when you activate the catapult and the rock (or any kind of ammo) fires.
It relied on a torsion (twisting) to provide the energy for the throw, as opposed to a counterweight.
The energy in a catapult is stored as potential energy, specifically elastic potential energy. This energy is stored in the stretched material of the catapult, such as a spring or elastic band, ready to be converted into kinetic energy when the catapult is released.
The main energy transfer for a catapult is from the potential energy stored in the tension of the catapult arm or springs to the kinetic energy of the projectile as it is launched.
When a catapult is released, potential energy is converted into kinetic energy. The stored potential energy in the tension of the catapult's arm is released, propelling the object forward with kinetic energy.
A Trebuchet Catapult
In the elasticity of it being held down. It depends on which catapult mechanism, all catapults are powered by potential energy; for example the simple catapult is an elasctic band that is pulled back converting the energy used to pull it back (usually muscle power) into the potential energy in the stretched elastic band.
A catapult has potential energy stored in the elastic material when it is pulled back. This potential energy is released when the catapult is triggered, converting into kinetic energy as the projectile is launched.
When the elastic of a catapult is pulled back, it stores potential energy in the form of elastic potential energy. This potential energy is converted into kinetic energy when the catapult is released, launching the projectile forward.
The scientific principles behind a catapult involve potential and kinetic energy. When the catapult is loaded with an object, it stores potential energy. As the catapult arm is released, the potential energy is converted into kinetic energy, propelling the object forward. The design of the catapult, including the leverage and tension mechanisms, determines the efficiency and distance of the launch.
A catapult transfers potential energy stored in the tension of its spring or elastic material into kinetic energy when it launches a projectile.