The same as for any other type of energy - the joule.
A body A of mass m is placed in the gravitational field of a body B of mass M. The gravitational potential of body B at a point in the field is the work done is bringing unit mass from infinity to that point and is independent of body A. On the other hand, the gravitational potential energy of body A is the energy possessed by it due to its position in the field. In fact, Gravitational potential energy = mass of body(A) x gravitational potential
Gravitational potential is a measure of the gravitational potential energy per unit mass at a point in a field. The gravitational potential energy of an object at a point is equal to the product of the object's mass, acceleration due to gravity, and the height of the object from a chosen reference point. As an object moves in a gravitational field, its potential energy changes due to its position relative to the reference point.
Gravitational potential is a scalar quantity. It represents the amount of energy per unit mass at a point in a gravitational field. When considering gravitational potential, only the magnitude of the potential is important, not its direction.
The unit of intensity of gravitational field is newtons per kilogram (N/kg), while the unit of gravitational potential is Joules per kilogram (J/kg).
the units for gravitational potential energy is joules (j)
A body A of mass m is placed in the gravitational field of a body B of mass M. The gravitational potential of body B at a point in the field is the work done is bringing unit mass from infinity to that point and is independent of body A. On the other hand, the gravitational potential energy of body A is the energy possessed by it due to its position in the field. In fact, Gravitational potential energy = mass of body(A) x gravitational potential
(Kg.m^2)/sec^2In SI units,It's common unit is the JouleIn the SI, the unit for energy - any type of energy - is the joule.In the SI, the unit for energy - any type of energy - is the joule.
Gravitational potential is a measure of the gravitational potential energy per unit mass at a point in a field. The gravitational potential energy of an object at a point is equal to the product of the object's mass, acceleration due to gravity, and the height of the object from a chosen reference point. As an object moves in a gravitational field, its potential energy changes due to its position relative to the reference point.
It isn't. Voltage can be compared to the GRAVITATIONAL POTENTIAL, which is a concept that is related, but different from, gravitational potential energy.Voltage is the energy change PER UNIT CHARGE between two points. Gravitational potential is the energy PER UNIT MASS between two points.
Gravitational potential is a scalar quantity. It represents the amount of energy per unit mass at a point in a gravitational field. When considering gravitational potential, only the magnitude of the potential is important, not its direction.
The unit of intensity of gravitational field is newtons per kilogram (N/kg), while the unit of gravitational potential is Joules per kilogram (J/kg).
It is created when a body of unit mass is brought from infinity to that point without acceleration.
the units for gravitational potential energy is joules (j)
Formula for Gravitational potential is - G M / r Here G is universal Gravitation constant, M - mass of the planet and r is the distance of the point from the centre of the planet. The unit is J/kg If potential energy is needed then the potential is to be multiplied by the mass m. So gravitational potential energy = - G M m / r So the unit would be J (joule)
A joule is simply a unit to measure energy. Examples of energy include gravitational potential energy, kinetic energy, sound energy, light energy, elastic energy, nuclear energy.
The Earth's gravitational field and gravitational potential energy are really two quite different things. The relationalship is the following: Gravitational potential energy = mass x gravity x height Where gravity is the acceleration due to gravity - near Earth's surface, that's 9.8 meters/second2 - or the equivalent, weight per unit mass (which near Earth's surface is 9.8 newton/kilogram).
Same as any other energy: Joules.Same as any other energy: Joules.Same as any other energy: Joules.Same as any other energy: Joules.