It sinks.
If the buoyant force on an object is greater than the weight of the object, the object will float. This is because the buoyant force will push the object upward with a force greater than the force of gravity pulling it downward.
Yes, greater density will result in a greater buoyant force. Buoyant force is the force that pushes an object up in a fluid, and it is dependent on the density of the fluid and the volume of the object. When an object is more dense than the fluid it is in, it will experience a greater buoyant force pushing it upward.
When the buoyant force is greater than the force of gravity, an object will float or rise. This is because the buoyant force pushes upward on the object with a greater force than gravity pulling downward, resulting in a net upward force.
fluid with higher density, as the buoyant force is directly proportional to the density of the fluid. Therefore, the object placed in the fluid with higher density will experience a greater buoyant force.
The object with greater volume displaces more fluid, resulting in a greater buoyant force acting on it. This is known as Archimedes' principle. Additionally, the density of the fluid and the object also play a role in determining the buoyant force.
If the buoyant force on an object is greater than the weight of the object, the object will float. This is because the buoyant force will push the object upward with a force greater than the force of gravity pulling it downward.
Yes, greater density will result in a greater buoyant force. Buoyant force is the force that pushes an object up in a fluid, and it is dependent on the density of the fluid and the volume of the object. When an object is more dense than the fluid it is in, it will experience a greater buoyant force pushing it upward.
When the buoyant force is greater than the force of gravity, an object will float or rise. This is because the buoyant force pushes upward on the object with a greater force than gravity pulling downward, resulting in a net upward force.
No.
fluid with higher density, as the buoyant force is directly proportional to the density of the fluid. Therefore, the object placed in the fluid with higher density will experience a greater buoyant force.
The object with greater volume displaces more fluid, resulting in a greater buoyant force acting on it. This is known as Archimedes' principle. Additionally, the density of the fluid and the object also play a role in determining the buoyant force.
The buoyant force is determined by the volume of the object displaced in a fluid, not its surface area. The buoyant force is equal to the weight of the fluid displaced by the object, as described by Archimedes' principle.
The buoyant force is what causes and object to float. If the buoyant force is less than the object weight, it sinks. If the buoyant force is greater than the objects weight, it rises to the top. If it is equal, the object will float in the middle, neither rising or falling.
If the buoyant force is greater than the weight of an object, it will float on the surface of a fluid. This is known as buoyancy, where the upward force from the fluid exceeds the downward force of gravity on the object.
An object floats when the buoyant force acting on it is greater than its weight, causing it to stay on the surface of a fluid. Conversely, an object sinks when its weight is greater than the buoyant force, causing it to submerge in the fluid.
If the weight of an object is greater than its buoyant force, then it will not float - it will sink.
When the buoyant force on an object is greater than the weight of the object, the object will float. This is because the upward force of buoyancy exceeds the downward force of gravity, allowing the object to stay afloat in a fluid.