The difference in velocity between adjacent layers of the fluid is known as a velocity gradient and is given by v/x, where v is the velocity difference and x is the distance between the layers. To keep one layer of fluid moving at a greater velocity than the adjacent layer, a force F is necessary, resulting in a shearing stress F/A, where A is the area of the surface in contact with the layer being moved.
Distance is the measure of how far an object has traveled regardless of time, while time is the duration taken to cover that distance. When a body is moving with uniform velocity, the distance covered is proportional to the time taken to cover that distance.
average velocity is the displacement over time while instantaneous velocity refers to the velocity of an object at one point or at as pecific point of time. *displacement is the difference between the initial position and the final position of an object. (distance 2 - distance 1)
In the kinematic equations for distance, the relationship between initial velocity, acceleration, and time is that the distance traveled is determined by the initial velocity, the acceleration, and the time taken to travel that distance. The equations show how these factors interact to calculate the distance an object moves.
The relationship between the velocity of an object and the time it takes to travel a certain distance is that the velocity of an object is directly proportional to the time it takes to travel a certain distance. This means that as the velocity of an object increases, the time it takes to travel a certain distance decreases, and vice versa.
Velocity includes direction. And it's the 'difference', not the 'distance'.
velocity is a distance travelled per sec
Velocity is distance divided by time. So the value of the velocity-time plot at any point in time will be the slope of the distance-time plot at that point in time.
Distance covred in unit time is called speed
Speed is the rate of change in distance, whereas velocity is speed and direction of travel. Acceleration is the change in velocity (including direction).
Yes. The first is a speed (or velocity), the second is a distance.
The difference in velocity between adjacent layers of the fluid is known as a velocity gradient and is given by v/x, where v is the velocity difference and x is the distance between the layers. To keep one layer of fluid moving at a greater velocity than the adjacent layer, a force F is necessary, resulting in a shearing stress F/A, where A is the area of the surface in contact with the layer being moved.
distance over time= speed displacement over time = velocity Difference between the two- distance and speed are scalar quantities (described by magnitude only) while displacement adn velocity are vector quantities (described by both magnitude and direction).
The difference in velocity between adjacent layers of the fluid is known as a velocity gradient and is given by v/x, where v is the velocity difference and x is the distance between the layers. To keep one layer of fluid moving at a greater velocity than the adjacent layer, a force F is necessary, resulting in a shearing stress F/A, where A is the area of the surface in contact with the layer being moved.
Velocity (distance-time), Magnitude (volume) and Density (echo/harmonic) signatures differ.
Distance is the measure of how far an object has traveled regardless of time, while time is the duration taken to cover that distance. When a body is moving with uniform velocity, the distance covered is proportional to the time taken to cover that distance.
average velocity is the displacement over time while instantaneous velocity refers to the velocity of an object at one point or at as pecific point of time. *displacement is the difference between the initial position and the final position of an object. (distance 2 - distance 1)