DIFFERENCE:
a bar magnet is a permanent magnet where as solenoid is a electromagnet so it acts as a magnet only when electricity is passed through it.
SIMILARITIES:
they both act as magnets and both have a similar magnetic field.
To demagnetize a bar magnet using a solenoid, the magnet can be placed inside a solenoid and the current can be gradually decreased to zero. This process disrupts the alignment of magnetic domains within the magnet, leading to demagnetization. The alternating current can also be used for more effective demagnetization.
A solenoid acts like a magnet when an electrical current is sent through the coil. A permanent magnet is magnetic all the time. Therefore, they are similar when both act like a magnet, but not when the solenoid is turned off.
A solenoid can be converted into an electromagnet by running an electric current through the coil of wire. The current creates a magnetic field around the coil, turning the solenoid into a magnet. When the current is turned off, the solenoid no longer functions as a magnet.
When the magnet is moved into the solenoid, the change in magnetic field induces an electric current in the solenoid. This induced current then creates a magnetic field that opposes the initial magnetic field created by the permanent magnet. This opposing magnetic field causes the galvanometer deflection to be reversed.
A solenoid is a coil of wire that creates a magnetic field when an electric current passes through it, while an electromagnet is a type of magnet that is created by passing an electric current through a coil of wire. In essence, a solenoid is a type of electromagnet, but not all electromagnets are solenoids.
you are gay
a bar magnet
To demagnetize a bar magnet using a solenoid, the magnet can be placed inside a solenoid and the current can be gradually decreased to zero. This process disrupts the alignment of magnetic domains within the magnet, leading to demagnetization. The alternating current can also be used for more effective demagnetization.
A solenoid acts like a magnet when an electrical current is sent through the coil. A permanent magnet is magnetic all the time. Therefore, they are similar when both act like a magnet, but not when the solenoid is turned off.
A solenoid typically produces a magnetic field similar to that of a bar magnet. The magnetic field lines form loops around the solenoid, making it closely resemble a bar magnet with north and south poles at either end.
A solenoid can be converted into an electromagnet by running an electric current through the coil of wire. The current creates a magnetic field around the coil, turning the solenoid into a magnet. When the current is turned off, the solenoid no longer functions as a magnet.
magnet which we get naturally from earth is called natural magnet e.g: lodestone.. while magnet made from magnetic material is called artificial magnet ...
The magnetic field in a solenoid resembles the field of a bar magnet, with field lines running parallel to the axis inside the solenoid and forming loops around the outside.
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a result the resultant magnetic field is very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axis of solenoid. Thus, the solenoid behaves like a bar magnet.
To get a magnet.Magnets are available in nature.You can make a magnet by tying a piece of iron to a strong magnet for some time.You can also get a magnet by making an Electo-magnet or solenoid.
When the magnet is moved into the solenoid, the change in magnetic field induces an electric current in the solenoid. This induced current then creates a magnetic field that opposes the initial magnetic field created by the permanent magnet. This opposing magnetic field causes the galvanometer deflection to be reversed.
The north and south poles of a magnet create a magnetic field that interacts with a solenoid, which is a coil of wire. When a magnet is moved near the solenoid, the changing magnetic field induces an electromotive force (EMF) in the wire, generating an electric current if the circuit is closed. The direction of the induced current depends on the orientation of the magnet's poles relative to the solenoid, following Faraday's law of electromagnetic induction. This principle is fundamental in applications like electric generators and transformers.