The three types of vectors are position vectors, displacement vectors, and force vectors. Position vectors represent the position of a point in space relative to a reference point, displacement vectors represent the change in position of an object, and force vectors represent the interaction between objects that can cause acceleration.
Yes, two vectors of different magnitudes can be combined to give a zero resultant if they are equal in magnitude but opposite in direction. For three vectors to give a zero resultant, they must form a closed triangle or meet at a common point where the sum of the vectors equals zero.
Yes, two vectors with different magnitudes can be combined to give a zero resultant if they are in opposite directions. However, it is not possible for three vectors with different magnitudes to give a zero resultant because they must have specific magnitudes and directions to cancel each other out completely.
If all magnitudes are different, then minimum is three.
You should try to visualize this yourself. Draw arrows, representing vectors, on paper; draw them head-to-tail. Try to make the head of the last arrow return to the tail of the first one. The answer is no, and yes.
Vectors that go in different directions are called orthogonal vectors. This means that the vectors are perpendicular to each other, with a 90 degree angle between them.
Two vectors: no. Three vectors: yes.
Yes.
Two vectors, no; three vectors yes.
Yes, two vectors of different magnitudes can be combined to give a zero resultant if they are equal in magnitude but opposite in direction. For three vectors to give a zero resultant, they must form a closed triangle or meet at a common point where the sum of the vectors equals zero.
-- The minimum magnitude that can result from the combination of two vectors is the difference between their magnitudes. If their magnitudes are different, then they can't combine to produce zero. -- But three or more vectors with different magnitudes can combine to produce a zero magnitude.
Yes, two vectors with different magnitudes can be combined to give a zero resultant if they are in opposite directions. However, it is not possible for three vectors with different magnitudes to give a zero resultant because they must have specific magnitudes and directions to cancel each other out completely.
yeah
Yes, it is possible to add three vectors of equal magnitude but different directions to get a zero vector. This occurs when the vectors are arranged in a way that their directions cancel each other out. Mathematically, this can happen when the vectors form a closed triangle or when they are evenly spaced around a circle.
mAYBE
A triangle of vectors, in which the sides are the three vectors arranged head-tail.
vectors and scalars.....
Three vectors are coplanar if they sum to zero. V1 + V2 + V3 = o means the three vectors are coplanar.