speed it up
slow it down
and change direction.
Forces can: - Cause and acceleration o Speeding up o Slowing down o Change direction - Do nothing - Cause work (w = Fd) - Ie. Change shape
Balanced forces acting on an object do not change the object's position.
Two forces that can make an object move are external forces, such as pushing or pulling it, and gravitational forces acting on the object.
Yes, an object at rest can still have forces acting upon it. These forces may include gravitational forces, normal forces, frictional forces, or applied forces. These forces can either be balanced, resulting in the object remaining at rest, or unbalanced, causing the object to start moving.
Forces acting on an object are unbalanced when the individual forces do not cancel each other out. This can happen when the forces have different magnitudes or directions, causing a net force on the object. As a result, the object will accelerate in the direction of the net force.
Forces can push or pull an object, change the object's shape or motion, and accelerate an object.
Balanced forces acting on an object do not change the object's position.
* Balanced: The vector sum of all forces on an object is zero. The object does not accelerate.* Unbalanced: The vector sum of all forces on an object is NOT zero, the object DOES accelerate.
Two forces that can make an object move are external forces, such as pushing or pulling it, and gravitational forces acting on the object.
Yes, an object at rest can still have forces acting upon it. These forces may include gravitational forces, normal forces, frictional forces, or applied forces. These forces can either be balanced, resulting in the object remaining at rest, or unbalanced, causing the object to start moving.
Because NOT all forces are equal and opposite. By Newton's Third Law, if object A attracts object B, then object B also attracts object A - with an equal but opposite force. But those forces act on DIFFERENT objects! The forces on object A, and on object B, may be unbalanced!Because NOT all forces are equal and opposite. By Newton's Third Law, if object A attracts object B, then object B also attracts object A - with an equal but opposite force. But those forces act on DIFFERENT objects! The forces on object A, and on object B, may be unbalanced!Because NOT all forces are equal and opposite. By Newton's Third Law, if object A attracts object B, then object B also attracts object A - with an equal but opposite force. But those forces act on DIFFERENT objects! The forces on object A, and on object B, may be unbalanced!Because NOT all forces are equal and opposite. By Newton's Third Law, if object A attracts object B, then object B also attracts object A - with an equal but opposite force. But those forces act on DIFFERENT objects! The forces on object A, and on object B, may be unbalanced!
If there are two or more unequal forces acting on an object then the object will be acting on the forces. ^_^
Forces acting on an object are unbalanced when the individual forces do not cancel each other out. This can happen when the forces have different magnitudes or directions, causing a net force on the object. As a result, the object will accelerate in the direction of the net force.
Forces can push or pull an object, change the object's shape or motion, and accelerate an object.
Forces can change the speed of an object, the direction of an object's motion, and the shape of an object.
They are called COUPLE.if forces on an object are equal and opposite...
Any force that causes motion or displacement in an object can do work on that object. Examples include gravitational forces, electrical forces, and magnetic forces. Work is calculated as the force applied to an object multiplied by the distance the object moves in the direction of the force.
No, we cannot see all of the forces that affect an object because some forces, like gravity or magnetic forces, are invisible to the naked eye. However, we can observe the effects of these forces on the object's motion or behavior.