When you divide output work by input force, you get mechanical advantage, which is a measure of the factor by which a machine amplifies the input force to perform work. It can also tell you how much easier a machine makes a particular task by reducing the amount of force needed.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
You can find the output force by dividing the work done by the input force by the efficiency. This formula is: Output Force = Work / (Input Force * Efficiency).
let the input force be F1,and the distance between point of application of input force and the lever point is x1,similarly if output force iis F2,and distance of it's point of apllication is x2,then efficiency of the lever is (F2*x2)/(F1*x1) actually F*x gives the work done,and efficiency of any machine is output work/input work
When you divide input work by output work, you get the efficiency of a system. Efficiency is a measure of how well a system converts input work into output work, expressed as a percentage. A higher efficiency value indicates that more of the input work is being used to produce output work.
In an ideal machine, if you exert an input force over a greater distance than the output force, the input force will be smaller than the output force. This is because work input is equal to work output in an ideal machine, and work is calculated as force times distance. Therefore, if the input force acts over a greater distance, the output force must be larger to balance the work done.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
output force divide by the input force is the mechanical advantage of a simple machine.The output force is the force that is exerted by the machine on an object, and the input force is the force that we exert on a machine.
You can find the output force by dividing the work done by the input force by the efficiency. This formula is: Output Force = Work / (Input Force * Efficiency).
let the input force be F1,and the distance between point of application of input force and the lever point is x1,similarly if output force iis F2,and distance of it's point of apllication is x2,then efficiency of the lever is (F2*x2)/(F1*x1) actually F*x gives the work done,and efficiency of any machine is output work/input work
When you divide input work by output work, you get the efficiency of a system. Efficiency is a measure of how well a system converts input work into output work, expressed as a percentage. A higher efficiency value indicates that more of the input work is being used to produce output work.
In an ideal machine, if you exert an input force over a greater distance than the output force, the input force will be smaller than the output force. This is because work input is equal to work output in an ideal machine, and work is calculated as force times distance. Therefore, if the input force acts over a greater distance, the output force must be larger to balance the work done.
The input force is the force applied to a machine to make it work, while the output force is the force generated by the machine in response to the input force. The output force is what produces the desired work or movement from the machine based on the input force applied.
Work Input- The work done on a machine as the input force acts through the input distance. Work Output - The work done by a machine as the output force acts through the output distance (What the machine does to the object (dependent on the force) to increase the output distance).
Input force is the force applied to an object, while output force is the force exerted by the object in response. In a simple machine, the input force is the force applied to it, and the output force is the force produced by the machine to do work. The relationship between input and output forces determines the efficiency of a machine.
In an ideal machine, the input force will be smaller than the output force when the input force is exerted over a greater distance than the output force. This is because work input and work output must be equal in an ideal machine, and since work = force x distance, a smaller input force over a greater distance will result in a larger output force over a shorter distance to maintain equilibrium.
Input work refers to the work done on a machine, which is calculated as the input force multiplied by the input distance. Output work is the work produced by the machine, which is calculated as the output force multiplied by the output distance. The efficiency of a machine is determined by comparing the output work to the input work, with ideal machines having an efficiency of 100%.
The input force is the force applied to a machine to make it work, while the output force is the force produced by the machine as a result of the input force. In simple terms, the input force is what you put into a machine, and the output force is what you get out of it.