DC current has no effect on the inductor(can be considered as a short circuit) as the current does not change in a DC supply voltage this one just produces a magnetic field which remains constant , as the magnetic field is not varying no emf is induced in the circuit , so literally it has no effect on the circuit when the supply is of DC voltage.
when an alternating current is set up in a circuit , the Alternating current brings a magnetic field in the inductor which is variable (since the current is varying...) this variable magnetic field induces an emf in the circuit (back emf) which opposes the cause that is producing the change (lenz's law)
explanation consider a circuit with an inductor connected to an AC voltage
during the positive half cycle when the voltage increases the current also increases in the circuit [take the current direction as clockwise] this causes a variable increasing magnetic field in the inductor , this magnetic field in turn induces current in the circuit which is opposing the increase in the current flow from the original source, the inverse happen during the decreasing half of the half of the positive cycle , here the induced current adds up with the decreasing current opposing the cause that produced this back current (cause :- decrease in current changes the magnetic field so the induced current is produced ..... it is opposing the change because :- the induced current either decreases the increasing current or increases the decreasing current )
The resistance of an inductor can affect the efficiency of an electrical circuit. Higher inductor resistance can lead to energy loss in the form of heat, reducing the overall efficiency of the circuit. Lower resistance inductors are more efficient as they waste less energy.
The phase difference between the current through the resistor and inductor in an AC circuit is 90 degrees.
As the energy stored in the inductor decreases over time in a decaying RL circuit, the power dissipation also decreases. This is because less energy is being transferred from the inductor to the resistor, resulting in lower power being dissipated in the circuit.
An inductor works by storing energy in the form of a magnetic field when current flows through it. When the current changes, the magnetic field also changes, inducing a voltage in the inductor. This stored energy can then be released back into the circuit when needed.
The current in an LC circuit is significant because it creates oscillations between the inductor and capacitor, leading to the circuit's resonant frequency. This current affects the overall behavior by determining the rate at which energy is exchanged between the inductor and capacitor, influencing the amplitude and frequency of the oscillations in the circuit.
In DC inductor is short circuited .
Actually Inductor oppose the change of current in the circuit..... Acts like a short circuit in steady state condition....
we use the inductor because it helps the circuit to have an appropriate amount of current, so that the circuit in the appliance will say longer.
A: The inductor is called a RF choke
A resistor or an inductor. The inductor limits transient current, not steady state current.
The resistance of an inductor can affect the efficiency of an electrical circuit. Higher inductor resistance can lead to energy loss in the form of heat, reducing the overall efficiency of the circuit. Lower resistance inductors are more efficient as they waste less energy.
The phase difference between the current through the resistor and inductor in an AC circuit is 90 degrees.
Current filtering
To improve the power factor
Yes, an inductor is a short circuit to dc...that's true....IF the inductor is an ideal one, that is, the inductor has no resistance but has inductance only. Anything in real world, as you know, is not ideal. An inductor is usually made of a copper wire. A copper wire has its own resistance. If an inductor coil is thin and long (i.e. many turns), it will provide an appreciable resistance to DC, and will no longer be a short circuit.
An inductor cannot work in dc because the frequency is zero there by making the inductive reactance zero as a consequenceAnswerOf course an inductor can work in a d.c. circuit!
If the circuit is undriven, there is no power, so inserting a core does nothing. In general, however, inserting a core into an inductor increases its inductance. Depending on the circuit, that lowers the resonant frequency.