The mass of an object depends on the materials out of which it is made.
Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.
The weight of an object depends on its mass and the acceleration due to gravity. The weight of an object can be calculated using the equation: Weight = mass x acceleration due to gravity.
Mass and gravity
The force of gravity on Mercury is about 3.7 meters per second squared, or 3.7 N/kg. The force of gravity on an object on Mercury will depend on the object's mass.
Mass, Height, and Gravity Gravitational Potential Energy= Mass * gravity * height
gravity
The gravitational forces associated with an object depend on the object's mass, but they don't depend at all on the substance the object is made of.
Gravity and Mass
yes unless its kavanha
Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.
The mass of an object doesn't depend on the gravitational force on the object.
Gravity does not depend on density. Gravity is the gravitational pull that is invisible and cannot be touched or changed. Density is how much matter is packed within an object, which can be changed. Gravity and density are two totally different things, and are in no way related, therefore gravity does not depend on density.
The weight of an object depends on its mass and the acceleration due to gravity. The weight of an object can be calculated using the equation: Weight = mass x acceleration due to gravity.
The force of gravity on Mercury is about 3.7 meters per second squared, or 3.7 N/kg. The force of gravity on an object on Mercury will depend on the object's mass.
Mass and gravity
The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.
Density is not affected by gravity. Density is affected by mass and volume, such that density = mass/volume. Weight, but not mass, is affected by gravity. Weight and mass are not the same thing.