The wavelength of particular light determines its color. Shorter wavelengths correspond to colors like blue and violet, while longer wavelengths correspond to colors like red and orange.
To determine the frequency of a given wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value, so by dividing it by the wavelength, you can calculate the frequency of the wave.
Newton's rings can be used to determine the wavelength of light because the diameter of the rings varies with the wavelength of the light being used. By measuring the diameter of the rings, the wavelength of the light can be calculated using the formula for constructive interference.
To determine the frequency of a wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of 3.00 x 108 meters per second. By dividing the speed of light by the wavelength, you can calculate the frequency of the wave.
To determine the frequency from a given wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of approximately 3.00 x 108 meters per second. By dividing the speed of light by the wavelength, you can calculate the frequency of the wave.
You can use the equation: wavelength = speed of light / frequency. Given the speed of light (3.00 x 10^8 m/s) and the frequency of the light source, divide the speed of light by the frequency to determine the wavelength of the light.
To determine UV-absorption you need to use UV-light. And there's a defined wavelength for UV-light.
To determine the frequency of a given wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value, so by dividing it by the wavelength, you can calculate the frequency of the wave.
Newton's rings can be used to determine the wavelength of light because the diameter of the rings varies with the wavelength of the light being used. By measuring the diameter of the rings, the wavelength of the light can be calculated using the formula for constructive interference.
To determine the frequency of a wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of 3.00 x 108 meters per second. By dividing the speed of light by the wavelength, you can calculate the frequency of the wave.
the wavelength of the reflected light :)
Light wavelength and light spectrum i believe.
To determine the frequency from a given wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of approximately 3.00 x 108 meters per second. By dividing the speed of light by the wavelength, you can calculate the frequency of the wave.
the wavelength of the reflected light :)
It is a spectrum
If a wavelength of light emitted from a particular red diode laser is 651 nm, its wavelength would be equivalent to 0.000000651 meters.
You can use the equation: wavelength = speed of light / frequency. Given the speed of light (3.00 x 10^8 m/s) and the frequency of the light source, divide the speed of light by the frequency to determine the wavelength of the light.
Energy/frequency or energy*wavelength/speed of light.