It will shorten the wavelength.
Increasing the speed of the plunger would decrease the wavelength of the wave. This is because the wavelength and speed of a wave are inversely related according to the wave equation λ = v/f, where λ is the wavelength, v is the speed, and f is the frequency of the wave.
Increasing the speed of the plunger will result in shorter wavelength waves being produced. This is because the wavelength of a wave is inversely proportional to the speed of the wave: as the speed increases, the wavelength decreases.
Increasing the speed of the plunger will not affect the wavelength of the waves. The wavelength of the waves is determined by the frequency of the source that is creating the waves, not by the speed of the medium through which the waves are traveling.
You can decrease the wavelength of a transverse wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave, so increasing the frequency will result in a shorter wavelength.
To decrease the value of wavelength, you can increase the frequency of the wave. This is because the wavelength and frequency of a wave are inversely related according to the wave equation: wavelength = speed of light / frequency. So, by increasing the frequency, you will effectively decrease the wavelength.
Increasing the speed of the plunger would decrease the wavelength of the wave. This is because the wavelength and speed of a wave are inversely related according to the wave equation λ = v/f, where λ is the wavelength, v is the speed, and f is the frequency of the wave.
Increasing the speed of the plunger will result in shorter wavelength waves being produced. This is because the wavelength of a wave is inversely proportional to the speed of the wave: as the speed increases, the wavelength decreases.
Increasing the speed of the plunger will not affect the wavelength of the waves. The wavelength of the waves is determined by the frequency of the source that is creating the waves, not by the speed of the medium through which the waves are traveling.
I would think the wavelength would be shorter as you would stroke the plunger more often in any given period of time. That would make the peaks closer together.Unless you are refering to only one stroke and then I would say no effect on wavelength.
Increasing the speed of the plunger will increase the frequency of the waves.
Assuming a constant wavelength, then increasing the wave speed will increase the frequency.
You can decrease the wavelength of a transverse wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave, so increasing the frequency will result in a shorter wavelength.
Wavelength also increases proportionally. Reasoning: Relevant equation- v= f x wavelength therefore speed is directly proportional to wavelength, and so as speed increases, the wavelength would increase proportionally. hope this helps if more information is required, email me @ physicsisland@hotmail.com
Speed affects the frequency and pressure affects the wavelength.
To decrease the value of wavelength, you can increase the frequency of the wave. This is because the wavelength and frequency of a wave are inversely related according to the wave equation: wavelength = speed of light / frequency. So, by increasing the frequency, you will effectively decrease the wavelength.
it gets faster.
Increasing energy of a wave will increase its frequency and decrease its wavelength. This is because energy is directly proportional to frequency (E = hf) and inversely proportional to wavelength (E = hc/λ), where h is Planck's constant and c is the speed of light.