They are inversely proportional to each other.
The relationship between frequency and wavelength for electromagnetic waves is inverse: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency of the wave.
The frequency and wavelength of an electromagnetic wave are inversely proportional - as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
The relationship between frequency and wavelength is inverse: as frequency increases, wavelength decreases, and vice versa. This is because frequency and wavelength are inversely proportional in a wave, such as in electromagnetic waves.
wavelength. This is because frequency and wavelength have an inverse relationship, meaning as frequency increases, wavelength decreases. This relationship is described by the equation speed = frequency x wavelength, where speed is the speed of light in a vacuum.
The relationship between wavelength and frequency is inverse - as wavelength decreases, frequency increases, and vice versa. Gamma rays have the highest frequency among electromagnetic waves.
The relationship between frequency and wavelength for electromagnetic waves is inverse: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency of the wave.
The frequency and wavelength of an electromagnetic wave are inversely proportional - as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
The product of (wavelength) times (frequency) is equal to the speed of the wave.
The relationship between frequency and wavelength is inverse: as frequency increases, wavelength decreases, and vice versa. This is because frequency and wavelength are inversely proportional in a wave, such as in electromagnetic waves.
wavelength. This is because frequency and wavelength have an inverse relationship, meaning as frequency increases, wavelength decreases. This relationship is described by the equation speed = frequency x wavelength, where speed is the speed of light in a vacuum.
The relationship between wavelength and frequency is inverse - as wavelength decreases, frequency increases, and vice versa. Gamma rays have the highest frequency among electromagnetic waves.
Yes, that is true. In general, there is an inverse relationship between frequency and wavelength for electromagnetic waves. As the frequency increases, the wavelength decreases. This relationship is described by the equation speed = frequency * wavelength, where speed is a constant for a given medium.
The frequency of an electromagnetic wave is inversely proportional to its wavelength, meaning a higher frequency corresponds to a shorter wavelength. The angular velocity of an electromagnetic wave is directly proportional to its frequency, so an increase in frequency will lead to an increase in angular velocity.
The wavelength and frequency of electromagnetic waves are inversely related. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
The relationship between wavelength and frequency in electromagnetic radiation is inverse - shorter wavelengths correspond to higher frequencies. Higher frequency radiation carries more energy, as energy is directly proportional to frequency in the electromagnetic spectrum.
The frequency of an electromagnetic wave is determined by the speed of light divided by the wavelength of the wave. This relationship is defined by the equation: frequency = speed of light / wavelength.
The frequency and wavelength of an electromagnetic wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This is because the speed of light is constant, so a higher frequency wave must have shorter wavelengths to maintain that speed.