leakage flux
Resistance to movement of magnetic lines of force is described as reluctance. Reluctance is similar to resistance in an electric circuit and is a measure of the opposition that a magnetic circuit offers to the magnetic flux. It depends on the material and the geometry of the magnetic circuit.
The resistance of a substance to the passing of magnetic flux lines is called magnetic reluctance. It is analogous to electrical resistance in a circuit and is influenced by the material's properties and geometry. A material with high reluctance impedes the flow of magnetic flux lines, while one with low reluctance allows them to pass more easily.
The direction of magnetic flux in a magnetic field is from the north pole to the south pole.
The formula for magnetic flux is B A cos(), where is the magnetic flux, B is the magnetic field strength, A is the area of the surface, and is the angle between the magnetic field and the surface normal. Magnetic flux is calculated by multiplying the magnetic field strength, the area of the surface, and the cosine of the angle between the magnetic field and the surface normal.
The flux linkage formula used to calculate the total magnetic flux passing through a coil of wire is given by the equation N, where represents the magnetic flux, N is the number of turns in the coil, and is the magnetic flux per turn.
The reluctance symbol is a measure of the opposition to magnetic flux in a magnetic circuit. It is represented by the symbol "R" and is the reciprocal of permeance, which is a measure of the ease with which magnetic flux is established in a material or circuit.
A simple method for altering the magnetic flux would be to change the amount of current flowing in the coil or circuit. Generally speaking, more current, more magnetic flux, and vice versa.
The air gap in a magnetic circuit is important because it increases the reluctance of the circuit, which in turn influences the magnetic flux and magnetic field strength. By controlling the size of the air gap, we can control the level of magnetic flux and magnetic force produced in the circuit. This can be useful in applications where precise control over magnetic properties is required.
reluctance, it is the resistance of a magnetic circuit to the establishment of a magnetic flux by a magnetomotive force.
It suggests that :- An EMF is set Up in circuit when the magnetic flux linking the circuit is changed in any manner.The magnitude of this EMF is proportional to the time rate of flux linkage with circuit.
Faraday's law of electromagnetic induction states that a voltage is induced in a circuit whenever there is a changing magnetic field that links the circuit, and the magnitude of the induced voltage is proportional to the rate of change of the magnetic flux.
The magnetic field used in machines is quantified in terms of its flux density (symbol: B), expressed in teslas. The flux density is established by the magnetic field strength (H), expressed in amperes per metre, set up in the field windings.As the magnetic field strength increases, the flux density increases until it reaches saturation. This is the point when the magnetic domains within the magnetic circuit are all aligned. At this point, any further increase in magnetic field strength will fail to increase the flux density.So saturation of the magnetic circuit limits the flux density of the field.
Resistance to movement of magnetic lines of force is described as reluctance. Reluctance is similar to resistance in an electric circuit and is a measure of the opposition that a magnetic circuit offers to the magnetic flux. It depends on the material and the geometry of the magnetic circuit.
There is no straightforward answer to your question. A tesla is the unit of measurement for magnetic flux density, defined in terms of magnetic flux per unit area. Magnetic flux density is determined by the magnetic field strength of the magnetic circuit in question which is expressed in ampere (turns) per metre. Unfortunately, the relationship between magnetic field strength and flux density isn't straightforward, as it depends on the shape of the B/H curve for the magnetic circuit's material. So, as you can see, there are too many unknown variables to give you a straightforward answer.
Basically useful fluke is the flux that flows with in the magnetic circuit of an armature. That is why when there is an air gap the flux enters the armature which makes it useful flux! Hope that answers your question!
Magnetic circuit follows equation (4) that is Ni = (Ф) ( l / μA) or m.m.f(magneto motive force) = (Flux) (reluctance).Electric circuit follows ohm's law that is E = I.R or e.m.f(electro motive force) = (current) (Resistance)From above point m.m.f in magnetic circuit is like as e.m.f in electrical circuit.Flux in magnetic circuit is similar as current in electrical circuit.Reluctance in magnetic circuit, S = ( l / μA) is similar to resistance R = (ρl/A) in electric circuit.Permeance (= 1/reluctance) in magnetic circuit is equivalent to conductance (=1/resistance) in electric circuit.In magnetic circuit flux establishes but not flow like as current in magnetic circuit.In magnetic circuit energy needed only to establish the flux but no consistent energy need to maintain it whereas in electric circuit continuous energy needed to flow of current.Resistance of an electric circuit is constant (for same temperature) and is independent of current but reluctance of magnetic circuit is not constant because it depends on μ (=B/H) which is not constant and depends on B/H.
Reluctance is the opposition offered by a magnetic circuit to the formation of magnetic flux. It is equivalent to resistance in an electric circuit.Reluctance is the ratio of a magnetic circuit's magnetomotive force (measured in amperes) to its magnetic flux(measured in webers, pronounced 'vay-bers'). So, reluctance is measured in amperes per weber (which is often 'spoken' as 'ampere-turns per weber'). This is equivalent, in an electric circuit, to the ratio: electomotive force to electric current.