answersLogoWhite

0

If the velocity of an object doubles, the centripetal force required to keep it in circular motion also doubles. This is because centripetal force is directly proportional to the square of the velocity.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

When does centripetal force double?

Since a=Rω², when you double the radius, but hold the angular velocity constant, you double the force. Also when you increase the angular velocity or velocity by a factor of √2 and hold the radius constant.


What is the relationship between centripetal force and velocity in circular motion?

In circular motion, centripetal force is the force that keeps an object moving in a circle. The centripetal force is directly proportional to the velocity of the object in circular motion. This means that as the velocity of the object increases, the centripetal force required to keep it moving in a circle also increases.


What is the relationship between the velocity of an whirling object and the centripetal force that is exerted on it?

The velocity of a whirling object is directly proportional to the centripetal force exerted on it. As the object moves faster, the centripetal force required to keep it in circular motion increases. The equation for centripetal force is Fc = (mv^2)/r, where m is mass, v is velocity, and r is the radius of circular motion.


How is the radius of rotation related to the centripetal force and angular velocity?

Assuming that angles are measured in radians, and angular velocity in radians per second (this simplifies formulae): Radius of rotation is unrelated to angular velocity. Linear velocity = angular velocity x radius Centripetal acceleration = velocity squared / radius Centripetal acceleration = (angular velocity) squared x radius Centripetal force = mass x acceleration = mass x (angular velocity) squared x radius


What happens to centripetal force if the mass doubles?

If the mass doubles, the centripetal force required to keep the object moving in a circular path will also double. This is because centripetal force is directly proportional to the mass of the object.

Related Questions

What is the relationship between centripetal force and velocity?

Centripetal force is = mass * velocity square divided by radius


When does centripetal force double?

Since a=Rω², when you double the radius, but hold the angular velocity constant, you double the force. Also when you increase the angular velocity or velocity by a factor of √2 and hold the radius constant.


What is the relationship between centripetal force and velocity in circular motion?

In circular motion, centripetal force is the force that keeps an object moving in a circle. The centripetal force is directly proportional to the velocity of the object in circular motion. This means that as the velocity of the object increases, the centripetal force required to keep it moving in a circle also increases.


What is the relationship between the velocity of an whirling object and the centripetal force that is exerted on it?

The velocity of a whirling object is directly proportional to the centripetal force exerted on it. As the object moves faster, the centripetal force required to keep it in circular motion increases. The equation for centripetal force is Fc = (mv^2)/r, where m is mass, v is velocity, and r is the radius of circular motion.


How is the radius of rotation related to the centripetal force and angular velocity?

Assuming that angles are measured in radians, and angular velocity in radians per second (this simplifies formulae): Radius of rotation is unrelated to angular velocity. Linear velocity = angular velocity x radius Centripetal acceleration = velocity squared / radius Centripetal acceleration = (angular velocity) squared x radius Centripetal force = mass x acceleration = mass x (angular velocity) squared x radius


What happens to centripetal force if the mass doubles?

If the mass doubles, the centripetal force required to keep the object moving in a circular path will also double. This is because centripetal force is directly proportional to the mass of the object.


How is centripetal force affected by mass?

Centripetal force is not affected by mass. The formula for centripetal force is Fc = (mv^2) / r, where m is mass, v is velocity, and r is the radius of the circular motion. The mass only affects the inertia of the object in circular motion, not the centripetal force required to keep it moving in a circle.


How does the velocity of a circular moving object affect the centripetal force on that object?

The centripetal force required to keep an object moving in a circle increases as the velocity of the object increases. This is because a higher velocity means there is a greater tendency for the object to move in a straight line, requiring a stronger force to keep it moving in a circle. In other words, centripetal force is directly proportional to the square of the velocity of the object.


What is the meaning of centripetal force?

Answer It is the force which keeps a body moving in circular motion. Centripetal force is the force that acts opposite to cetrifugal force. Centripetal force is a real force. Centrifugal force is a pseudo-force


In centripetal force what is the relationship between v and f if r is kept constant?

Centripetal force has the following formula: Fcentripetal = m times V2/r What that says is that for a constant r in an example, the Fcentripetal is proportional to V2. The centripetal force is proportional to the square of the velocity of the object.


What is the formula for the centripetal acceleration force of a mass?

The formula for centripetal acceleration is a = v^2 / r, where a is the centripetal acceleration, v is the velocity of the object, and r is the radius of the circular path. The force required to produce this acceleration is given by F = m * a, where F is the centripetal force, m is the mass of the object, and a is the centripetal acceleration.


How many times centripetal force will increase if the angular speed of a body moving with uniform speed moving in a circle is increases?

Centripetal acceleration, and therefore centripetal force, is proportional to the square of the angular velocity. For example, if you increase the angular velocity by a factor of 10, the centripetal force will be increased by a factor of 100.