becomes kinetic energy
The water above receives energy as it falls down the short waterfall. This energy was stored as potential energy in the gravitational field of the Earth and came out of storage as the water dropped. This energy which came out of the gravitational field ended up being expressed as the kinetic energy of the water. That is, the water gains kinetic energy as it drops. An ounce of water is going faster when it hits the bottom of the waterfall than it was when it went over the top of the waterfall.
If you double the height of an object, its gravitational potential energy will also double. Gravitational potential energy is directly proportional to the height of an object above a reference point.
Potential energy and gravitational potential energy are different from each other ."Potential energy is the ability of a body to do work." Anddue_to_its_height.%22">"Gravitational potential energy is the ability of a body to do work due to its height."Gravitational potential energy is a type of potential energy.
In a waterfall, potential energy from the water at a higher elevation is converted into kinetic energy as the water falls downward. The kinetic energy can then be harnessed to generate electricity using hydroelectric power plants.
As the object falls, its gravitational potential energy decreases while its kinetic energy increases. This is due to the conversion of potential energy into kinetic energy as the object accelerates downward under the influence of gravity. At the point of impact, all the initial gravitational potential energy is converted into kinetic energy.
Gravitational potential energy.
The water has its maximum kinetic energy at the bottom of a waterfall where its velocity is highest. It has minimum gravitational energy at the top of the waterfall before it starts to fall, as it has not yet gained significant potential energy from being at a higher elevation.
The water above receives energy as it falls down the short waterfall. This energy was stored as potential energy in the gravitational field of the Earth and came out of storage as the water dropped. This energy which came out of the gravitational field ended up being expressed as the kinetic energy of the water. That is, the water gains kinetic energy as it drops. An ounce of water is going faster when it hits the bottom of the waterfall than it was when it went over the top of the waterfall.
the water loses gravitational potential energy and gains kinetic energy as it falls
From my understanding, yes. A waterfall is an example of potential gravitational energy and kinetic energy. The water is moving downstream at a fast pace (kinetic energy) and when reaching the drop off the water gains potential gravitational energy and drops towards the ground. Mechanical energy is a mix between Kinetic energy and any type of potential energy so yes, a waterfall is an example of Mechanical Energy.
it means potential (as in my case, Gravitational Potential energy)
If you double the height of an object, its gravitational potential energy will also double. Gravitational potential energy is directly proportional to the height of an object above a reference point.
Potential energy and gravitational potential energy are different from each other ."Potential energy is the ability of a body to do work." Anddue_to_its_height.%22">"Gravitational potential energy is the ability of a body to do work due to its height."Gravitational potential energy is a type of potential energy.
hydro thermal or gravitational hydro where the water is evaporated and the steam pushes a turbine that creates energy. gravitational where the water falling hits and turns a turbine that creates energy
Gravitational-potential energy.
In a waterfall, potential energy from the water at a higher elevation is converted into kinetic energy as the water falls downward. The kinetic energy can then be harnessed to generate electricity using hydroelectric power plants.
-- If the velocity is horizontal, then gravitational potential energy doesn't change. -- If velocity is vertical and upward, gravitational potential energy increases at a rate proportional to the speed. -- If velocity is vertical and downward, gravitational potential energy decreases at a rate proportional to speed.