The image becomes blurred and it's size increases.
When an object is placed closer to a convex lens, the image that is formed will be farther away from the lens than the object is. This is because the convex lens will refract the light rays in a way that causes them to converge at a point behind the lens, creating a real and magnified image.
When an object approaches a convex lens, the image formed can either be real or virtual depending on the object's distance from the lens. If the object is beyond the lens' focal point, a real image forms on the opposite side of the lens. If the object is within the focal point, then a virtual image is formed on the same side as the object.
As an object moves closer to a convex lens, the size of the image increases. The orientation of the image remains the same, which means it is still upright if the object is upright and inverted if the object is inverted.
The image formed by a convex mirror when an object is placed in front of it is virtual, upright, and smaller in size than the object.
For a convex lens the focal point is the transition point between getting a real image and a virtual image. If the object is at a greater distance then F you get a real image. If the object is closer to the lens then F you get a virtual image. If the object is located at F the light rays from the object leave the lens parallel and never form any kind of image.
When an object is placed closer to a convex lens, the image that is formed will be farther away from the lens than the object is. This is because the convex lens will refract the light rays in a way that causes them to converge at a point behind the lens, creating a real and magnified image.
No, the closer an object is to the lens, the more the spherical it is.
When an object approaches a convex lens, the image formed can either be real or virtual depending on the object's distance from the lens. If the object is beyond the lens' focal point, a real image forms on the opposite side of the lens. If the object is within the focal point, then a virtual image is formed on the same side as the object.
As an object moves closer to a convex lens, the size of the image increases. The orientation of the image remains the same, which means it is still upright if the object is upright and inverted if the object is inverted.
The entire image is flipped upsidedown.
The image formed by a convex mirror when an object is placed in front of it is virtual, upright, and smaller in size than the object.
The image formed by a convex mirror is upright and larger than the object.
For a convex lens the focal point is the transition point between getting a real image and a virtual image. If the object is at a greater distance then F you get a real image. If the object is closer to the lens then F you get a virtual image. If the object is located at F the light rays from the object leave the lens parallel and never form any kind of image.
A convex lens can make an object look upside down when the object is placed closer to the lens than its focal point, resulting in a virtual image being formed. This virtual image is then magnified by the lens, causing the observer to perceive the object as upside down.
Convex lenses makes an object appear larger and closer. They curve inwards toward the center.
As an image moves closer to a convex lens, the image becomes larger and appears more magnified. The image may also shift from being virtual to real, depending on the distance and position of the object relative to the lens's focal point.
Covering the top half of an object will only allow the rays from the bottom half to pass through the lens. The image formed by a convex lens will still be created, but only for the bottom half of the object that is visible and the top half will not contribute to the formation of the image.