As the bulb becomes brighter, more current flows through the filament, increasing its temperature. This increase in temperature causes the filament to glow more intensely, resulting in a brighter light output.
As the bulb becomes brighter, the temperature of the filament increases. This is due to the increased flow of electricity through the filament, causing it to heat up and emit more light. The relationship between brightness and temperature is direct - the brighter the bulb, the hotter the filament.
The bulb gets brighter because the filament is getting hotter. If the filament's temperature gets too high it will melt at some point and fall apart. The current will stop flowing and the bulb will "blow".
When electricity flows through the filament in a light bulb, the filament becomes very hot and starts to emit light due to the process of incandescence. The electricity heats up the filament to a high temperature, causing it to glow and produce light.
When the filament in a light bulb heats up, it emits light and heat energy. The filament is designed to reach a high temperature so that it glows and produces visible light. The heat generated is a byproduct of the light production process.
When an electric bulb heats up, it can stop glowing if the filament inside breaks due to the extreme temperature. The filament in a light bulb glows when an electric current passes through it, but if it breaks, the circuit is disrupted and the bulb will not light up. This can also happen if the filament is damaged by vibration or stress.
As the bulb becomes brighter, the temperature of the filament increases. This is due to the increased flow of electricity through the filament, causing it to heat up and emit more light. The relationship between brightness and temperature is direct - the brighter the bulb, the hotter the filament.
The bulb gets brighter because the filament is getting hotter. If the filament's temperature gets too high it will melt at some point and fall apart. The current will stop flowing and the bulb will "blow".
When electricity flows through the filament in a light bulb, the filament becomes very hot and starts to emit light due to the process of incandescence. The electricity heats up the filament to a high temperature, causing it to glow and produce light.
The temperature decreases
The filament breaks.
In a burning light bulb, electricity flows through a filament, which heats up due to resistance and emits light. The filament becomes white hot and glows, illuminating the surroundings.
The hotter the star, the brighter. Ex: A stove
When the filament in a light bulb heats up, it emits light and heat energy. The filament is designed to reach a high temperature so that it glows and produces visible light. The heat generated is a byproduct of the light production process.
As a star expands, its temperature decreases. This is because the energy in the star becomes more spread out as the star grows in size, leading to a decrease in temperature. Although the surface of the star can appear brighter as it expands, the overall temperature of the star decreases.
the range of energies becomes broader
Rubber becomes harder and less pliable as the temperature decreases until ultimately it actually becomes brittle.
When temperature becomes below the melting point, it 'freezes' to become solid.