If the conductor is carrying AC, no effect. If the conductor is carrying DC, then the compass needle will be deflected. Provided the two are close enough, and the DC current is strong enough.
When a compass is held close to a wire carrying a current, the magnetic field produced by the current will deflect the compass needle. This happens because a magnetic field is generated around the wire due to the flow of current, and the compass needle aligns itself with this magnetic field. The deflection of the compass needle can be used to determine the direction of the current in the wire.
The needle of a compass will deflect from its original position when a wire carrying an electric current is placed across it. This is due to the magnetic field created by the current in the wire, which interacts with the magnetic field of the compass needle, causing it to move.
When the current through the conductor is reversed, the magnetic field around the conductor will also reverse. As a result, the compass needle in Figure 7-11 will deflect in the opposite direction compared to when the current was flowing in the original direction.
When a compass is brought near a current-carrying wire, the magnetic needle of the compass will align itself perpendicular to the wire due to the magnetic field created by the flowing current. This effect is known as the right-hand rule for electromagnetism.
When a compass is held close to a wire carrying current, the magnetic field created by the current induces a magnetic field around the wire. The compass aligns with this magnetic field and its needle will deflect in a direction perpendicular to the wire. This can be used to determine the direction of the current flow in the wire.
When a compass is held close to a wire carrying a current, the magnetic field produced by the current will deflect the compass needle. This happens because a magnetic field is generated around the wire due to the flow of current, and the compass needle aligns itself with this magnetic field. The deflection of the compass needle can be used to determine the direction of the current in the wire.
The needle of a compass will deflect from its original position when a wire carrying an electric current is placed across it. This is due to the magnetic field created by the current in the wire, which interacts with the magnetic field of the compass needle, causing it to move.
When the current through the conductor is reversed, the magnetic field around the conductor will also reverse. As a result, the compass needle in Figure 7-11 will deflect in the opposite direction compared to when the current was flowing in the original direction.
When a compass is brought near a current-carrying wire, the magnetic needle of the compass will align itself perpendicular to the wire due to the magnetic field created by the flowing current. This effect is known as the right-hand rule for electromagnetism.
When a compass is held close to a wire carrying current, the magnetic field created by the current induces a magnetic field around the wire. The compass aligns with this magnetic field and its needle will deflect in a direction perpendicular to the wire. This can be used to determine the direction of the current flow in the wire.
Placing a compass under a current-carrying wire can cause the needle to deflect due to the magnetic field produced by the electric current. This phenomenon, known as the right-hand rule, demonstrates the relationship between electric current and magnetic fields.
it is 345678910 fun
That depends. If we assume that current is flowing though the wire then there is an induced magnetic field equal to B=u_o*I/(2R*pi). For a visual refer to http://hyperphysics.phy-astr.gsu.edu/HBASE/magnetic/magcur.html#c2
When flux density increases, the force experienced by a current-carrying conductor due to a magnetic field (sideways force in this case) will also increase. This is because the force is directly proportional to the magnetic flux density and the current in the conductor.
The current caring capacity of a wire is based on the physical size of the wire. The larger the diameter of the wire the more amperage the wire is allowed to carry.
the current will increase
The polarity of the electromagnet reverses.