answersLogoWhite

0

When bundles of fuel rods are bombarded by neutrons, a nuclear chain reaction occurs, leading to the splitting (fission) of uranium atoms in the fuel rods. This releases energy in the form of heat and more neutrons, which can trigger additional fission reactions in neighboring fuel rods, sustaining the chain reaction. This process is controlled in nuclear reactors to generate heat for electricity production.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What must metal fuel rods inside a nuclear reactor be bombarded with in order to start a chain reaction?

The metal fuel rods inside a nuclear reactor must be bombarded with neutrons in order to start a chain reaction. This process triggers the fission of uranium atoms in the fuel rods, releasing energy in the form of heat.


What happens after a freely moving neutron it is introduced to a nuclear fuel?

When a freely moving neutron is introduced to a nuclear fuel like uranium, it can be absorbed by the nucleus of the fuel atom, causing it to become unstable and split into two or more smaller atoms, releasing energy and more neutrons in the process. This is known as nuclear fission, and it can lead to a chain reaction if the released neutrons go on to collide with other fuel atoms and cause them to undergo fission as well.


Why neutrons are made slow in a reactor?

Neutrons are slowed down in a reactor to increase the likelihood of them causing fission reactions in nuclear fuel. Slower neutrons are more easily absorbed by the fuel, increasing the overall efficiency of the reactor. This process is achieved through a moderator, such as water or graphite, which helps reduce the speed of the neutrons.


A picture of an element?

Fuel elements for PWR and BWR are described here (from Wikipedia) There is a picture shown but pictures don't reproduce on Wikianswers. Pressurized water reactor (PWR) fuel consists of cylindrical rods put into bundles. A uranium oxide ceramic is formed into pellets and inserted into Zircaloy tubes that are bundled together. The Zircaloy tubes are about 1 cm in diameter, and the fuel cladding gap is filled with helium gas to improve the conduction of heat from the fuel to the cladding. There are about 179-264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled 14x14 to 17x17. PWR fuel bundles are about 4 meters in length. In PWR fuel bundles, control rods are inserted through the top directly into the fuel bundle. The fuel bundles usually are enriched several percent in 235U. The uranium oxide is dried before inserting into the tubes to try to eliminate moisture in the ceramic fuel that can lead to corrosion and hydrogen embrittlement. The Zircaloy tubes are pressurized with helium to try to minimize pellet cladding interaction (PCI) which can lead to fuel rod failure over long periods. In boiling water reactors (BWR), the fuel is similar to PWR fuel except that the bundles are "canned"; that is, there is a thin tube surrounding each bundle. This is primarily done to prevent local density variations from effecting neutronics and thermal hydraulics of the nuclear core on a global scale. In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest U.S. BWR forms the reactor core. Each BWR fuel rod is back filled with helium to a pressure of about three atmospheres (300 kPa).


How do nuclear fuel rods work?

Usually, the rods themselves are made of Uranium-238. The fuel inside the rods is Uranium-235, which is highly fissionable. The Uranium-238 is very heavy, and slows down the neutrons so that they can properly strike the U-235 atoms.

Related Questions

What happens when fuel rods are bombarded by neutrons?

When fuel rods are bombarded by neutrons, certain isotopes of uranium (U-235) undergo fission, releasing more neutrons and a large amount of energy in the form of heat. This heat is used to generate steam that drives turbines to produce electricity in a nuclear reactor.


What must metal fuel rods inside a nuclear reactor be bombarded with in order to start a chain reaction?

The metal fuel rods inside a nuclear reactor must be bombarded with neutrons in order to start a chain reaction. This process triggers the fission of uranium atoms in the fuel rods, releasing energy in the form of heat.


What is used to bathe the control rods and fuel bundles of the nuclear reactor?

Boric acid solution is used to bathe the control rods and fuel bundles of a nuclear reactor. This solution helps control the nuclear reaction by absorbing excess neutrons.


Nuclear fuels are bombared by what particles to induce their fission?

Nuclear fuels are bombarded by neutrons to induce their fission reaction. Neutrons are able to penetrate the nucleus of the fuel atoms and cause them to split, releasing energy and more neutrons in the process. This chain reaction is the basis for nuclear power generation.


The fuel most commonly used in fission reactions is?

The fuel most commonly used in fission reactions is uranium-235. This isotope undergoes nuclear fission when bombarded by neutrons, releasing energy in the process.


What is a fuel rod?

A nuclear fuel rod is a tube filled with nuclear fuel. The tube part is made of material that allows neutrons to pass freely through, so the fuel can undergo reaction unhindered. The rods are put together in groups called bundles, which are attached together so they can be handled together. There is a link below to the section in an article on nuclear fuel that explains the fuel rods. Pictures are there as well.


What radioactive isotope is generally used to fuel a controlled nuclear chain reaction?

235U with a 5% enrichment of 238U is generally used to fuel a controlled nuclear chain reaction. In a navy nuclear application, such as a submarine, a higher enrichment of 238U is used, around 20%.


What happens after a freely moving neutron it is introduced to a nuclear fuel?

When a freely moving neutron is introduced to a nuclear fuel like uranium, it can be absorbed by the nucleus of the fuel atom, causing it to become unstable and split into two or more smaller atoms, releasing energy and more neutrons in the process. This is known as nuclear fission, and it can lead to a chain reaction if the released neutrons go on to collide with other fuel atoms and cause them to undergo fission as well.


What is η?

It is the thermal regeneration factor. It is greater than one. It is ratio of neutrons generated in the fuel to the absorbed neutrons.


What subatomic particle is in atoms fuel?

You think probable to neutrons.


Why neutrons are made slow in a reactor?

Neutrons are slowed down in a reactor to increase the likelihood of them causing fission reactions in nuclear fuel. Slower neutrons are more easily absorbed by the fuel, increasing the overall efficiency of the reactor. This process is achieved through a moderator, such as water or graphite, which helps reduce the speed of the neutrons.


A picture of an element?

Fuel elements for PWR and BWR are described here (from Wikipedia) There is a picture shown but pictures don't reproduce on Wikianswers. Pressurized water reactor (PWR) fuel consists of cylindrical rods put into bundles. A uranium oxide ceramic is formed into pellets and inserted into Zircaloy tubes that are bundled together. The Zircaloy tubes are about 1 cm in diameter, and the fuel cladding gap is filled with helium gas to improve the conduction of heat from the fuel to the cladding. There are about 179-264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled 14x14 to 17x17. PWR fuel bundles are about 4 meters in length. In PWR fuel bundles, control rods are inserted through the top directly into the fuel bundle. The fuel bundles usually are enriched several percent in 235U. The uranium oxide is dried before inserting into the tubes to try to eliminate moisture in the ceramic fuel that can lead to corrosion and hydrogen embrittlement. The Zircaloy tubes are pressurized with helium to try to minimize pellet cladding interaction (PCI) which can lead to fuel rod failure over long periods. In boiling water reactors (BWR), the fuel is similar to PWR fuel except that the bundles are "canned"; that is, there is a thin tube surrounding each bundle. This is primarily done to prevent local density variations from effecting neutronics and thermal hydraulics of the nuclear core on a global scale. In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest U.S. BWR forms the reactor core. Each BWR fuel rod is back filled with helium to a pressure of about three atmospheres (300 kPa).