no movement
In a lever, the resistance force is located between the effort force and the fulcrum. This setup creates a mechanical advantage that allows a smaller effort force to overcome a larger resistance force. The position and distance of the resistance force from the fulcrum determine the effectiveness of the lever system.
When the resistance force is increased on a lever, the effort force required to lift it also increases. This means more force is needed to overcome the resistance and achieve a balanced system.
The mechanical advantage is given by the ratio of resistance force to effort force. It represents the factor by which a simple machine multiplies the force applied to it. Mathematically, it can be calculated as mechanical advantage = resistance force / effort force.
Effort force is the force applied to overcome resistance force in order to move an object, while resistance force is the force that opposes the motion of an object. Effort force acts in the direction of motion, whereas resistance force acts in the opposite direction. The ratio of effort force to resistance force is a measure of mechanical advantage in simple machines.
The ratio of resistance force to effort force is equal to the mechanical advantage of a simple machine. This ratio indicates how much the machine amplifies the input force to overcome resistance. It is calculated as the ratio of the distances from the fulcrum to the points where the effort force and resistance force are applied.
In a lever, the resistance force is located between the effort force and the fulcrum. This setup creates a mechanical advantage that allows a smaller effort force to overcome a larger resistance force. The position and distance of the resistance force from the fulcrum determine the effectiveness of the lever system.
When the resistance force is increased on a lever, the effort force required to lift it also increases. This means more force is needed to overcome the resistance and achieve a balanced system.
The mechanical advantage is given by the ratio of resistance force to effort force. It represents the factor by which a simple machine multiplies the force applied to it. Mathematically, it can be calculated as mechanical advantage = resistance force / effort force.
Effort force is the force applied to overcome resistance force in order to move an object, while resistance force is the force that opposes the motion of an object. Effort force acts in the direction of motion, whereas resistance force acts in the opposite direction. The ratio of effort force to resistance force is a measure of mechanical advantage in simple machines.
The ratio of resistance force to effort force is equal to the mechanical advantage of a simple machine. This ratio indicates how much the machine amplifies the input force to overcome resistance. It is calculated as the ratio of the distances from the fulcrum to the points where the effort force and resistance force are applied.
The force that opposes the effort force is called the resistance force. It acts in the opposite direction to the effort force and may come from factors like friction or gravity.
The opposing force to the effort force is called the resistance force. This force acts in the opposite direction of the effort force and can make it more difficult to move an object. The relationship between the effort force and the resistance force determines the overall motion of the object.
In a machine, the effort force tries to overcome the resistance force. The effort force is applied to the machine in order to move or lift the resistance force, which is the force that opposes the motion or lifting action. The difference between the effort force and the resistance force determines the mechanical advantage of the machine.
Class 2.
This ratio is known as mechanical advantage in a simple machine. It indicates how much the machine multiplies the force applied. It can be calculated by dividing the resistance force by the effort force for a particular machine.
In a machine, the effort force you apply is used to overcome a resistance force. The resistance force is the force that the machine acts against in order to perform work.
The resistance force is the log. It trys to stop the wedge of the axe. The effort force of the swinging axe helps it break through the log, breaking through its resistance.