Speed (KE goes up by the square of the velocity).
Doubling the speed of an object has a greater effect on its kinetic energy than doubling its mass. The kinetic energy of an object is proportional to the square of its speed, but only linearly related to its mass. Therefore, an increase in speed will have a greater impact on the object's kinetic energy.
A change in an object's speed has a greater effect on its kinetic energy than a change in mass. Kinetic energy is proportional to the square of the velocity, so even a small change in speed can result in a significant change in kinetic energy. On the other hand, mass only affects kinetic energy linearly.
Doubling the velocity would have a greater effect on the kinetic energy of an object. The kinetic energy of an object is directly proportional to the square of its velocity, while it is only linearly proportional to its mass. Therefore, increasing the velocity has a more significant impact on the kinetic energy.
Doubling mass affects kinetic energy in that the greater the mass, the greater the kinetic energy. OK, but if you have a 10kg mass traveling at 2m/s and it bumps into and sticks to a 10g mass, the resultant speed would be 1m/s. The momentum stays the same. KE before is 10*2*2/2= 20, while the KE after is 20*1*1/2= 10. So it is not that the above answer is wrong, but rather, you question is not clear.
The Moon has a greater effect on tides, on planet Earth, than the Sun. This is despite the fact that the gravitational attraction by the Sun is greater - the reason is that tidal forces depend on the CUBE of the distance.
Doubling the speed of an object has a greater effect on its kinetic energy than doubling its mass. The kinetic energy of an object is proportional to the square of its speed, but only linearly related to its mass. Therefore, an increase in speed will have a greater impact on the object's kinetic energy.
A change in an object's speed has a greater effect on its kinetic energy than a change in mass. Kinetic energy is proportional to the square of the velocity, so even a small change in speed can result in a significant change in kinetic energy. On the other hand, mass only affects kinetic energy linearly.
Doubling the velocity would have a greater effect on the kinetic energy of an object. The kinetic energy of an object is directly proportional to the square of its velocity, while it is only linearly proportional to its mass. Therefore, increasing the velocity has a more significant impact on the kinetic energy.
Doubling mass affects kinetic energy in that the greater the mass, the greater the kinetic energy. OK, but if you have a 10kg mass traveling at 2m/s and it bumps into and sticks to a 10g mass, the resultant speed would be 1m/s. The momentum stays the same. KE before is 10*2*2/2= 20, while the KE after is 20*1*1/2= 10. So it is not that the above answer is wrong, but rather, you question is not clear.
The Moon has a greater effect on tides, on planet Earth, than the Sun. This is despite the fact that the gravitational attraction by the Sun is greater - the reason is that tidal forces depend on the CUBE of the distance.
The mass of an object has the most effect on its inertia. Inertia is a measure of an object's resistance to changes in its state of motion, and the greater the mass of an object, the greater its inertia.
They both have the same effect on the surface area of the pipe, but the radius has more effect on its volume/capacity.
Yes, Doubling Season has an effect on planeswalkers. It causes them to enter the battlefield with double the number of loyalty counters they would normally have.
weight is the effect of gravity acting on mass,the greater the mass the greater the effect on gravity will have on it therefore the greater the weight. eg. if the mass is 50kg and gravity is 10N the the weight is 500N,if the mass increases to 100kg the the weight would increase to 1000N
doubles
weight is the effect of gravity acting on mass,the greater the mass the greater the effect on gravity will have on it therefore the greater the weight. eg. if the mass is 50kg and gravity is 10N the the weight is 500N,if the mass increases to 100kg the the weight would increase to 1000N
The mass of an object has the most effect on its inertia. Inertia is the resistance of an object to changes in its motion, and this resistance is directly proportional to the object's mass. Objects with greater mass have greater inertia.