Remember that for any wave, wavelength x frequency = speed (of the wave). So, as the wavelength increases, the frequency decreases.
Also, since the energy of a photon is proportional to the frequency, the energy will decrease as well in this case.
As the frequency of electromagnetic radiation decreases, its wavelength increases. This is because wavelength and frequency are inversely proportional in electromagnetic waves, as defined by the equation speed = frequency x wavelength. A lower frequency corresponds to a longer wavelength in the electromagnetic spectrum.
The maximum wavelength at which electromagnetic radiation can occur is infinite.
Radio waves have the longest wavelength among the types of electromagnetic radiation listed.
Energy and wavelength of electromagnetic radiation are inversely related. This means that as the wavelength decreases, the energy of the radiation increases, and vice versa. This relationship is described by the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength.
When the wavelength of electromagnetic waves decreases, the frequency of the waves increases. This means that the waves carry more energy and are more powerful. Lower wavelengths are associated with higher energy electromagnetic radiation such as X-rays and gamma rays.
As the frequency of electromagnetic radiation decreases, its wavelength increases. This is because wavelength and frequency are inversely proportional in electromagnetic waves, as defined by the equation speed = frequency x wavelength. A lower frequency corresponds to a longer wavelength in the electromagnetic spectrum.
The maximum wavelength at which electromagnetic radiation can occur is infinite.
... inversely proportional to its frequency. This means that as the frequency of radiation increases, its wavelength decreases, and vice versa. This relationship is expressed by the equation λ = c / f, where λ is the wavelength, c is the speed of light, and f is the frequency of the radiation.
that depends on the wavelength of the radiation. the shorter the wavelength the more damage it can do.
Radio waves have the longest wavelength among the types of electromagnetic radiation listed.
Energy and wavelength of electromagnetic radiation are inversely related. This means that as the wavelength decreases, the energy of the radiation increases, and vice versa. This relationship is described by the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength.
Gamma rays have the shortest wavelength in the electromagnetic spectrum.
The wavelength of electromagnetic waves decreases as the frequency increases.
When the wavelength of electromagnetic waves decreases, the frequency of the waves increases. This means that the waves carry more energy and are more powerful. Lower wavelengths are associated with higher energy electromagnetic radiation such as X-rays and gamma rays.
inversely
The difference between types of electromagnetic radiation, such as radio waves, visible light, or X-rays, is determined by their frequency and wavelength. Electromagnetic radiation with higher frequency and shorter wavelength has more energy and is more harmful to biological tissues. The electromagnetic spectrum encompasses all these types of radiation.
Radiation changes across the electromagnetic spectrum based on the wavelength and frequency of the electromagnetic waves. As you move from radio waves to gamma rays, the wavelength decreases and the frequency increases. This results in higher energy levels and greater potential for ionization as you move towards the gamma ray end of the spectrum.