It is -18.33... (repeating) deg C.
The focal length of the lens is 10 meters. This can be calculated using the lens formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. Given the object and image distances, we can solve for the focal length.
The temperature reading 1 degree F = -17.22° Celsius.A change in temperature of 1 degree F (up or down) is a change of about .55 degrees Celsius. Celsius degrees are 1.8 times as large as Fahrenheit degrees.Example :86°F = 30°C87°F = about 30.55°C
The Fourier transform of the function f(x) 1/r is 1/k, where k is the wave number.
The equation that relates frequency (f) and period (T) is: f = 1/T or T = 1/f. This means that the frequency is the reciprocal of the period, and vice versa.
In Imperial units, the specific heat of water is measure in units of British thermal unit (BTU or Btu). 1 BTU is defined as the energy required to raise 1 lb(mass) of water from 60°F to 61°F at a constant pressure of one atmosphere.
85ºF = 29.44ºC
The temperature after the drop was -4°F.
350ºF = 176.67ºC
98.6 degrees Celsius is 37.1 degrees Fahrenheit.
Suppose N is a perfect number. Then N cannot be a square number and so N has an even number of factors.Suppose the factors are f(1) =1, f(2), f(3), ... , f(k-1), f(k)=N.Furthermore f(r) * f(k+1-r) = N for r = 1, 2, ... k so that f(r) = N/f(k+1-r)which implies that 1/f(r) = f(k+1-r)/NThen 1/f(1) + 1/(f(2) + ... + 1/f(k)= f(k)/N + f(k-1)/N + ... + f(1)/N= [f(k) + f(k-1) + ... + f(1)] / N= 2N/N since, by definition, [f(k) + f(k-1) + ... + f(1)] = 2N
Given the function f(x) = 2x + 3 and a = -1, we can find f(a) as follows: f(a) = 2(-1) + 3 f(a) = -2 + 3 f(a) = 1 So, f(a) = 1. To graph f(x) and 1/f(x), we can plot several points and connect them to visualize the functions. Here are some points for f(x): For f(x): When x = -2, f(x) = 2(-2) + 3 = -1 When x = -1, f(x) = 2(-1) + 3 = 1 When x = 0, f(x) = 2(0) + 3 = 3 When x = 1, f(x) = 2(1) + 3 = 5 When x = 2, f(x) = 2(2) + 3 = 7 Now, to find 1/f(x), we take the reciprocal of each f(x) value: For 1/f(x): When x = -2, 1/f(x) = 1/(-1) = -1 When x = -1, 1/f(x) = 1/1 = 1 When x = 0, 1/f(x) = 1/3 ≈ 0.333 When x = 1, 1/f(x) = 1/5 ≈ 0.2 When x = 2, 1/f(x) = 1/7 ≈ 0.143 Now, we can plot these points and connect them to obtain the graphs of f(x) and 1/f(x).
To find the third term of the sequence defined by the recursive rule ( f(1) = 2 ) and ( f(n) = f(n-1) + 1 ), we first calculate ( f(2) ) using the recursive formula. Since ( f(1) = 2 ), we have ( f(2) = f(1) + 1 = 2 + 1 = 3 ). Next, we calculate ( f(3) ) as ( f(3) = f(2) + 1 = 3 + 1 = 4 ). Thus, the third term of the sequence is ( f(3) = 4 ).
The function (sequence generator) f(x) with x∈ℕ has been defined as a recursive function (sequence), with the initial value defined for some x, ie starting form some some natural number (in this case 1), the value of the function (sequence) is given (in this case f(1) = 1), and each successive value of the function (sequence) is defined in terms of the current value f(x+1) = f{x} + g(x) where g(x) is a function with g(x) = 3x(x + 1).f(x + 1) = f(x) + 3x(x + 1)f(1) = 1→ f(2) = f(1 + 1) = f(1) + (3×1)(1 + 1) = 1 + 3×2 = 1 + 6 = 7→ f(3) = f(2 + 1) = f(2) + (3×2)(2 + 1) = 7 + 6×3 = 7 + 18 = 25I'll let you evaluate the rest.Hint:f(4) = f(3 + 1) = f(3) + (3×3)(3 + 1)f(5) = f(4 + 1) = f(4) + ...f(6) = f(5 + 1) = f(5) + ...
Given the properties of the function ( F(x) ), we can start by calculating ( F(1) = 1 ). Using the recursive relation ( F(x+1) = F(x) + 3x(x+1) + 1 ), we can compute the subsequent values: ( F(2) = F(1) + 3 \cdot 1 \cdot 2 + 1 = 1 + 6 + 1 = 8 ) ( F(3) = F(2) + 3 \cdot 2 \cdot 3 + 1 = 8 + 18 + 1 = 27 ) ( F(4) = F(3) + 3 \cdot 3 \cdot 4 + 1 = 27 + 36 + 1 = 64 ) ( F(5) = F(4) + 3 \cdot 4 \cdot 5 + 1 = 64 + 60 + 1 = 125 ) ( F(6) = F(5) + 3 \cdot 5 \cdot 6 + 1 = 125 + 90 + 1 = 216 ) The values are ( F(2) = 8 ), ( F(3) = 27 ), ( F(4) = 64 ), ( F(5) = 125 ), and ( F(6) = 216 ). The function exhibits a polynomial growth pattern, possibly resembling ( F(n) = n^3 ) as the outputs correspond to cubes of natural numbers.
All For 1 and 1 For All
PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.
Последнее Пьер де Ферма теоремы. (x,y,z,n) принадлежать( N+ )^4. n>2. (a) принадлежать Z F является функцией( a.) F(a)=[a(a+1)/2]^2 F(0)=0 и F(-1)=0. Рассмотрим два уравнения F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) непрерывный дедуктивного рассуждения F(z)=F(x)+F(y) эквивалент F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) выводить F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) выводить F(z-x-2)=F(x-x-2)+F(y-x-2) мы видим, F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) давать z=y и F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) давать z=/=y. так F(z-x-1)=F(x-x-1)+F(y-x-1) не выводить F(z-x-2)=F(x-x-2)+F(y-x-2) так F(z)=F(x)+F(y) не выводить F(z-1)=F(x-1)+F(y-1) так F(z)=F(x)+F(y) не эквивалентен F(z-1)=F(x-1)+F(y-1) Таким образом, возможны два случая. [F(x)+F(y)] = F(z) и F(x-1)+F(y-1)]=/=F(z-1) или наоборот так [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). или F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). у нас есть F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. так x^3+y^3=/=z^3. n>2. аналогичный непрерывный дедуктивного рассуждения G(z)*F(z)=G(x)*F(x)+G(y)*F(y) эквивалент G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) мы видим, G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) давать z=y. и G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 выводить G(x)>0. давать z=/=y. так G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y)не выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не эквивалентен G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) Таким образом, возможны два случая. [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) и [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) или наоборот. так [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. или G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] у нас есть x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] так x^n+y^n=/=z^n Счастливые и мира. Trần Tấn Cường.