The dimensional formula for magnetic flux is given by [M^1L^2T^-2A^-1], where M represents mass, L represents length, T represents time, and A represents electric current. Magnetic flux is defined as the product of the magnetic field strength and the area through which the magnetic field is passing.
The dimensional formula of magnetic flux is [M^1 L^2 T^-2 I^-1].
The formula for magnetic flux is B A cos(), where is the magnetic flux, B is the magnetic field strength, A is the area of the surface, and is the angle between the magnetic field and the surface normal. Magnetic flux is calculated by multiplying the magnetic field strength, the area of the surface, and the cosine of the angle between the magnetic field and the surface normal.
The formula for calculating the magnetic flux through a loop is given by B A cos(), where is the magnetic flux, B is the magnetic field strength, A is the area of the loop, and is the angle between the magnetic field and the normal to the loop.
The flux linkage formula used to calculate the total magnetic flux passing through a coil of wire is given by the equation N, where represents the magnetic flux, N is the number of turns in the coil, and is the magnetic flux per turn.
The magnitude of the magnetic flux through a circle due to a uniform magnetic field depends on the strength of the magnetic field, the area of the circle, and the angle between the magnetic field and the normal to the circle. The formula for magnetic flux is given by Φ = BAcos(θ), where B is the magnetic field strength, A is the area of the circle, and θ is the angle between the magnetic field and the normal to the circle.
The dimensional formula of magnetic flux is [M^1 L^2 T^-2 I^-1].
OGOJOJ
The formula for magnetic flux is B A cos(), where is the magnetic flux, B is the magnetic field strength, A is the area of the surface, and is the angle between the magnetic field and the surface normal. Magnetic flux is calculated by multiplying the magnetic field strength, the area of the surface, and the cosine of the angle between the magnetic field and the surface normal.
The formula for calculating the magnetic flux through a loop is given by B A cos(), where is the magnetic flux, B is the magnetic field strength, A is the area of the loop, and is the angle between the magnetic field and the normal to the loop.
The flux linkage formula used to calculate the total magnetic flux passing through a coil of wire is given by the equation N, where represents the magnetic flux, N is the number of turns in the coil, and is the magnetic flux per turn.
A unit of magnetic flux is called a Weber.
light speeeed mofos
The pole strength of a magnetic can be calculated by measuring the magnetic flux that it produces and dividing it by the area of the pole face. The formula to calculate the pole strength is: Pole Strength = Magnetic Flux / Area of pole face.
Inductance = Magnetic Flux/Current = [ML2T-2A-1]/[A] = [ML2T-2A-2] So, Dimensional Formula of Inductance = [ML2T-2A-2]
The magnetic flux through the loop can be calculated using the formula: magnetic flux = magnetic field strength x area x cos(theta), where theta is the angle between the magnetic field and the normal to the surface. Since the loop is perpendicular to the magnetic field, theta = 0. The area of the square loop is 16 cm^2. Therefore, the magnetic flux through the loop is 0.025 Tesla x 16 cm^2 = 0.4 Weber.
The magnitude of the magnetic flux through a circle due to a uniform magnetic field depends on the strength of the magnetic field, the area of the circle, and the angle between the magnetic field and the normal to the circle. The formula for magnetic flux is given by Φ = BAcos(θ), where B is the magnetic field strength, A is the area of the circle, and θ is the angle between the magnetic field and the normal to the circle.
The direction of magnetic flux in a magnetic field is from the north pole to the south pole.