answersLogoWhite

0

It is the distance along a light wave where the phase difference, delta phi = ((2*pi)/lambda)*(delta x), i.e. the distance for which there is a constant separation of troughs and peaks

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

Is sun light coherence source?

Coherence is a measure of how well a signal, such as a optical wavefront, correlates with itself. For example, if you measure a peak at one point in space and time, what is the chance that you will measure a peak at another space and time? This hints that there are actually two forms of coherence, one related to time and the other to space.Temporal coherence looks at how well radiation measured at one single point correlates over time. In other words, if you measure a peak at one moment in time, how well can you predict that you'll measure a peak at another moment in time? Temporal coherence generally requires a small spread in wavelengths and a source which emits light in-phase. Lasers typically have high temporal coherence, while sunlight, which has a broad emission spectrum, has a low temporal coherence.But that's not the end of the answer.The other type of coherence is spatial coherence, and relates to how well two points on an emitter are correlated. One classic way of demonstrating spatial interference is the double-slit experiment: put two small slits in a sheet, and check to see that the light from the slits interferes constructively. Spatial coherence generally requires a small degree of angular spread. Again, most lasers have high spatial coherence. Sunlight also has high spatial coherence: because the sun is so far away, the rays of light are almost parallel.The coherence of sunlight has been studied since 1869 (Agarwal et al, "Coherence properties of sunlight", Optics Letters 29, p. 459, 2004) -- but even with more than a century of coherence, the subtle difference between spatial and temporal coherence can be tricky.


Is it possible to have coherence between light sources emiting light of different wavelengths?

Yes, it is possible to have coherence between light sources emitting light of different wavelengths. Coherence refers to the phase relationship between two waves, and it is not dependent on the wavelengths of the light. However, achieving coherence between light sources of different wavelengths may require careful control and alignment of the sources.


Is coherence important in reflaction and refraction?

Yes, coherence is important in both reflection and refraction. In reflection, coherence ensures that the wavefronts remain in phase after reflection. In refraction, coherence helps to maintain the continuity of the wavefronts as the light passes through different mediums.


What are the three main characteristics of laser light?

The three main characteristics of laser light are coherence, monochromaticity, and directionality. Coherence refers to the light waves being in phase, monochromaticity means the light is of a single color or wavelength, and directionality refers to the light being focused in a tight beam.


What are light waves that moves together as they travel away from their source?

This phenomenon is called coherence, where light waves maintain a constant phase relationship as they propagate. This is important for applications like holography and optical coherence tomography.

Related Questions

What light property you can measure to estimate a light wave's temporal coherence and spatial coherence?

It is the phase, which can be measuerd with these type of coherence.


Is sun light coherence source?

Coherence is a measure of how well a signal, such as a optical wavefront, correlates with itself. For example, if you measure a peak at one point in space and time, what is the chance that you will measure a peak at another space and time? This hints that there are actually two forms of coherence, one related to time and the other to space.Temporal coherence looks at how well radiation measured at one single point correlates over time. In other words, if you measure a peak at one moment in time, how well can you predict that you'll measure a peak at another moment in time? Temporal coherence generally requires a small spread in wavelengths and a source which emits light in-phase. Lasers typically have high temporal coherence, while sunlight, which has a broad emission spectrum, has a low temporal coherence.But that's not the end of the answer.The other type of coherence is spatial coherence, and relates to how well two points on an emitter are correlated. One classic way of demonstrating spatial interference is the double-slit experiment: put two small slits in a sheet, and check to see that the light from the slits interferes constructively. Spatial coherence generally requires a small degree of angular spread. Again, most lasers have high spatial coherence. Sunlight also has high spatial coherence: because the sun is so far away, the rays of light are almost parallel.The coherence of sunlight has been studied since 1869 (Agarwal et al, "Coherence properties of sunlight", Optics Letters 29, p. 459, 2004) -- but even with more than a century of coherence, the subtle difference between spatial and temporal coherence can be tricky.


Is sun coherent source?

Coherence is a measure of how well a signal, such as a optical wavefront, correlates with itself. For example, if you measure a peak at one point in space and time, what is the chance that you will measure a peak at another space and time? This hints that there are actually two forms of coherence, one related to time and the other to space.Temporal coherence looks at how well radiation measured at one single point correlates over time. In other words, if you measure a peak at one moment in time, how well can you predict that you'll measure a peak at another moment in time? Temporal coherence generally requires a small spread in wavelengths and a source which emits light in-phase. Lasers typically have high temporal coherence, while sunlight, which has a broad emission spectrum, has a low temporal coherence.But that's not the end of the answer.The other type of coherence is spatial coherence, and relates to how well two points on an emitter are correlated. One classic way of demonstrating spatial interference is the double-slit experiment: put two small slits in a sheet, and check to see that the light from the slits interferes constructively. Spatial coherence generally requires a small degree of angular spread. Again, most lasers have high spatial coherence. Sunlight also has high spatial coherence: because the sun is so far away, the rays of light are almost parallel.The coherence of sunlight has been studied since 1869 (Agarwal et al, "Coherence properties of sunlight", Optics Letters 29, p. 459, 2004) -- but even with more than a century of coherence, the subtle difference between spatial and temporal coherence can be tricky.


What is a super luminescent diode?

With their emission properties Superluminescent Light-Emitting Diodes (SLEDs) are closing the gap between Laser Diodes (LDs) and Light Emitting Diodes (LEDs).They offer the broadband optical spectra of LEDs and the spatial coherence of LDs. Compared to Laser Diodes and LEDs, SLEDs can be understood as • Spatial coherent broadband laser diodes with a beam-like output • Temporal incoherent laser diodes with a broadband spectrum • Speckle-free laser diodes with a short coherence length • Spatial coherent LEDs with a beam-like output


Is it possible to have coherence between light sources emiting light of different wavelengths?

Yes, it is possible to have coherence between light sources emitting light of different wavelengths. Coherence refers to the phase relationship between two waves, and it is not dependent on the wavelengths of the light. However, achieving coherence between light sources of different wavelengths may require careful control and alignment of the sources.


Is it possible to coherence between light sources emitting light of different wavelengths?

I don't think so. Coherence is defined for light of a single wavelength.


Is coherence important in reflaction and refraction?

Yes, coherence is important in both reflection and refraction. In reflection, coherence ensures that the wavefronts remain in phase after reflection. In refraction, coherence helps to maintain the continuity of the wavefronts as the light passes through different mediums.


What is scanline coherence and edge line coherence?

With a rectangle we notice that we can exploit coherence-If the fill is solid black (say) then all the pixels are shaded the same-Each of the length of each span is the sameo(this is scan-line coherence)-It is possible also to exploit spatial coherence up to the edgesoi.e., if point (x,y) is inside the polygon then so is the point to the left and the right (unless it is an edge/ boundary point )-Thus we can draw horizontal spans for every y point in the rectangle


What are the three main characteristics of laser light?

The three main characteristics of laser light are coherence, monochromaticity, and directionality. Coherence refers to the light waves being in phase, monochromaticity means the light is of a single color or wavelength, and directionality refers to the light being focused in a tight beam.


What are light waves that moves together as they travel away from their source?

This phenomenon is called coherence, where light waves maintain a constant phase relationship as they propagate. This is important for applications like holography and optical coherence tomography.


What is meant by coherence of light?

Coherence of light refers to the property of light waves having a fixed phase relationship with each other. In coherent light, the peaks and troughs of the waves align with precision, leading to interference patterns like those seen in lasers. This property enables light to be focused into a tight beam and produce sharp, well-defined images.


What is the coherence property of laser light?

Coherence refers to the degree of correlation between the phases of different waves at the same frequency. In laser light, coherence means that the electromagnetic waves emitted have a constant phase relationship over a certain distance or time period, resulting in a well-defined and stable interference pattern. This property is essential for applications such as holography and interferometry.