Weight.
The pulling force caused by gravity is called weight. Weight is the measure of the force of gravity acting on an object mass.
The amount of gravity acting on an object is determined by its mass. The greater the mass of the object, the stronger the force of gravity acting on it. Gravity is a force that pulls objects towards each other, with the strength of the force depending on the masses of the objects and the distance between them.
The weight of an object is caused by the gravitational force acting on it. The weight of an object is the force exerted by gravity on the mass of the object. It is measured in units of force, such as pounds or newtons.
Weight is the measure of the force of gravity acting on an object. Mass is a measure of the amount of matter in an object. Weight depends on both the mass of the object and the acceleration due to gravity.
Increasing the mass of a protective container does not affect the force of gravity acting on it. The force of gravity is determined by the mass of the planet or celestial body the container is on and the distance from the center of that body. The mass of an object does not affect the force of gravity acting on it.
The pulling force caused by gravity is called weight. Weight is the measure of the force of gravity acting on an object mass.
The force produced by gravity acting on mass is known as weight. It is the force exerted by gravity on an object due to its mass. Weight is a force measured in newtons and is directly proportional to an object's mass.
The amount of gravity acting on an object is determined by its mass. The greater the mass of the object, the stronger the force of gravity acting on it. Gravity is a force that pulls objects towards each other, with the strength of the force depending on the masses of the objects and the distance between them.
No. The force of gravity acting on an object's mass is weight.
The weight of an object is caused by the gravitational force acting on it. The weight of an object is the force exerted by gravity on the mass of the object. It is measured in units of force, such as pounds or newtons.
Weight is the measure of the force of gravity acting on an object. Mass is a measure of the amount of matter in an object. Weight depends on both the mass of the object and the acceleration due to gravity.
Increasing the mass of a protective container does not affect the force of gravity acting on it. The force of gravity is determined by the mass of the planet or celestial body the container is on and the distance from the center of that body. The mass of an object does not affect the force of gravity acting on it.
If we have a force acting on a body and we know what that force is, and we also know that the force is gravity, we can solve because we know the force gravity exerts on a mass. If we take the total force acting on the body and divide it by the force of gravity per one unit of mass, we can find the number of units of mass that cause gravity to act on the object. We have 1033 Newtons of force acting on the object. Gravity pulls down with a force of 9.8 Newtons on 1 kilogram of mass. Our 1033 Newtons divided by 9.8 Newtons per kilogram = 105.41 kilograms
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
No, mass does not vary according to the force of gravity. Mass is a measure of how much matter an object has. Weight, however, is a measure of the force of gravity acting on an object; as such, weight varies according to gravitational field strength.
No, mass is a measure of the amount of matter in an object, while weight is the measure of the force of gravity acting on it. The weight of an object is calculated by multiplying its mass by the acceleration due to gravity.
The relationship between the mass of an object and the force of gravity acting on it is described by the equation ma mg. This equation shows that the force of gravity (Fg) acting on an object is equal to the mass of the object (m) multiplied by the acceleration due to gravity (g). In simpler terms, the force of gravity on an object is directly proportional to its mass.