An uncharged object is called neutral, meaning it has an equal number of positive and negative charges, resulting in a net charge of zero.
When charges in an uncharged object are rearranged without direct contact with a charged object, it is called charging by induction. This process involves bringing a charged object close to the uncharged object, causing the charges to redistribute within the uncharged object.
Charging an object without touching it is a process called induction. This involves bringing a charged object close to the uncharged object, causing the charges to redistribute within the uncharged object. This results in the uncharged object becoming charged without direct contact.
An uncharged object can become positively charged through a process called charging by induction. This occurs when a charged object is brought close to the uncharged object, causing a redistribution of electrons. Electrons are repelled by the like charge, leaving the uncharged object with a net positive charge.
The rearrangement of electrons on an uncharged object without direct contact with a charged object can occur through induction. This process involves bringing a charged object near the uncharged object, which causes a temporary separation of charge within the uncharged object. The closer charged object induces a redistribution of electrons within the uncharged object, resulting in one side becoming more negatively charged while the other becomes more positively charged.
A neutrally charged object can still be affected by a charged object. If a neutrally charged object is being approached by a negatively charged objects, the electrons within the neutrally charged object will migrate to the other side (as the two negative charges repel), leaving the side closes to the negative object positive. Protons do not move. From there, the protons are attracted to the electrons, therefore moving the 'uncharged' object.
When charges in an uncharged object are rearranged without direct contact with a charged object, it is called charging by induction. This process involves bringing a charged object close to the uncharged object, causing the charges to redistribute within the uncharged object.
Charging an object without touching it is a process called induction. This involves bringing a charged object close to the uncharged object, causing the charges to redistribute within the uncharged object. This results in the uncharged object becoming charged without direct contact.
An uncharged object can become positively charged through a process called charging by induction. This occurs when a charged object is brought close to the uncharged object, causing a redistribution of electrons. Electrons are repelled by the like charge, leaving the uncharged object with a net positive charge.
Due to an object nearby, the electrons move to a specific direction as they are either attracted or repelled by it. Such as if there is a negatively charged object near an uncharged object, the electrons in the uncharged object will move as far away from the negative object as possible, and this is what you called an induced charge.
charges that 'appear' on an uncharged object because of a charged object nearby is called induced charge.
Due to an object nearby, the electrons move to a specific direction as they are either attracted or repelled by it. Such as if there is a negatively charged object near an uncharged object, the electrons in the uncharged object will move as far away from the negative object as possible, and this is what you called an induced charge.
It becomes charged. (negatively)
The rearrangement of electrons on an uncharged object without direct contact with a charged object can occur through induction. This process involves bringing a charged object near the uncharged object, which causes a temporary separation of charge within the uncharged object. The closer charged object induces a redistribution of electrons within the uncharged object, resulting in one side becoming more negatively charged while the other becomes more positively charged.
A neutrally charged object can still be affected by a charged object. If a neutrally charged object is being approached by a negatively charged objects, the electrons within the neutrally charged object will migrate to the other side (as the two negative charges repel), leaving the side closes to the negative object positive. Protons do not move. From there, the protons are attracted to the electrons, therefore moving the 'uncharged' object.
An uncharged object can appear charged without charge transfer due to induction. When a charged object is brought near the uncharged object, it causes the charges within the uncharged object to rearrange temporarily, leading to an apparent charge on the surface. This is known as electrostatic induction.
Cönsider a negatively charged object be placed at a fixed position ,now a neutral or uncharged object is slowly introducing into the field which is produced by the electrons in negatively charged object.... And now according to the law of charges opposite charges attract each other similar thing taking place here the electrons present on the negatively charged object attracts the positive charge in neutral object by separting the charges inside the object wich is called induction as soon as the neutral object enters into the field produce by negatively charged object ...,and then it attracts...
A charged object will attract or repel an uncharged object through the electrostatic force. The direction of the attraction or repulsion depends on the types of charges involved (positive or negative) on the objects.