Air resistance is the force that opposes the motion of an object moving through the air. Terminal velocity is the maximum constant speed a falling object reaches when the force of gravity is balanced by the force of air resistance, resulting in no acceleration.
Air resistance increases as an object's speed increases. At terminal velocity, the upward force of air resistance equals the downward force of gravity, resulting in a constant velocity. The greater the air resistance, the lower the terminal velocity of an object falling through the air.
When air resistance and gravity are equal, it is known as terminal velocity. At terminal velocity, an object falling through the air no longer accelerates but rather falls at a constant speed due to the balance between air resistance and gravity.
The air resistance on the skydiver at terminal velocity is 500 N. At terminal velocity, the air resistance on the skydiver is equal in magnitude to the gravitational force pulling them downward. This balance of forces results in a constant velocity.
If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.
When an object falls, it reaches terminal velocity due to air resistance. Terminal velocity is the constant speed an object will reach when the force of gravity pulling it down is equal to the force of air resistance pushing against it. At terminal velocity, the object stops accelerating and falls at a constant speed.
Air resistance increases as an object's speed increases. At terminal velocity, the upward force of air resistance equals the downward force of gravity, resulting in a constant velocity. The greater the air resistance, the lower the terminal velocity of an object falling through the air.
When air resistance and gravity are equal, it is known as terminal velocity. At terminal velocity, an object falling through the air no longer accelerates but rather falls at a constant speed due to the balance between air resistance and gravity.
terminal velocity
The air resistance on the skydiver at terminal velocity is 500 N. At terminal velocity, the air resistance on the skydiver is equal in magnitude to the gravitational force pulling them downward. This balance of forces results in a constant velocity.
No. Terminal velocity is a particular kind of velocity and friction is a particular kind of force. The terminal velocity of a falling object is the maximum velocity it can have because air resistance prevents it from going any faster. And air resistance is a type of friction. So terminal velocity is due to a type of friction.
More resistance, caused by a greater density.
because there is more air resistance
Terminal Velocity. This is the velocity at which the accelaration from Earth's gravity and the drag from air resistance reaches equillibrium.
If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.If there is no air resistance, they will fall faster and faster.If there is air resistance, they will eventually approach a "terminal velocity", a maximum speed, at which the downward pull of Earth is counteracted by the backward pull of air resistance.
When an object falls, it reaches terminal velocity due to air resistance. Terminal velocity is the constant speed an object will reach when the force of gravity pulling it down is equal to the force of air resistance pushing against it. At terminal velocity, the object stops accelerating and falls at a constant speed.
Terminal Velocity
That's the velocity at which the force of air resistance is equal to the force of gravity.