a slinky spread out and then grab a few coils and release and watch a compressional wave! Another example is a sound wave. the particles compressed together form a compression. The particles more widely spread apart form a rarefaction.
slinky
Sound wave
Compressional waves are also called mechanical waves. Examples include the plasma waves or guided waves.
Compressional waves cause particles in a medium to move parallel to the direction of the wave, while transverse waves cause particles to move perpendicular to the direction of the wave. Sound waves are an example of compressional waves, while light waves are an example of transverse waves.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.
Light is an example of an electromagnetic (EM) wave. EM waves are transverse waves, not compressional waves. Sound waves are compressional waves, so both sound traveling through air and water would be compressional. Waves traveling along a coiled spring compress the coils together and spread them apart, so this is also an example of a compressional wave.
this is the waves of p waves that have same direction of waves
No, green light traveling through air is an example of an electromagnetic wave, not a compressional wave. Electromagnetic waves do not require a medium to propagate, while compressional waves, such as sound waves, do require a medium like air to travel through.
Compressional waves cause particles in a medium to move parallel to the direction of the wave, while transverse waves cause particles to move perpendicular to the direction of the wave. Sound waves are an example of compressional waves, while light waves are an example of transverse waves.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.
Compressional waves are waves that produce compression and rarefaction when traveling through a medium. Water waves are not considered as compressional waves.
Light is an example of an electromagnetic (EM) wave. EM waves are transverse waves, not compressional waves. Sound waves are compressional waves, so both sound traveling through air and water would be compressional. Waves traveling along a coiled spring compress the coils together and spread them apart, so this is also an example of a compressional wave.
Sound waves are an excellent example
this is the waves of p waves that have same direction of waves
No, green light traveling through air is an example of an electromagnetic wave, not a compressional wave. Electromagnetic waves do not require a medium to propagate, while compressional waves, such as sound waves, do require a medium like air to travel through.
Compressional, gasses can be compressed but cannot be wiggled side to side.
Seismic waves can be either transverse or compressional. P-waves are compressional waves that travel fastest, while S-waves are transverse waves that travel slower. Both types of waves are generated by earthquakes and used to study the Earth's interior.
No, compressional waves require a medium to travel through, so they cannot travel through a vacuum where there is no matter. Sound waves, which are compressional waves, cannot propagate through a vacuum.
primary waves or compressional waves
Compressional waves are also known as longitudinal waves, where particles move back and forth in the same direction as the wave. These waves are characterized by the compression and rarefaction of the medium they travel through. Examples of compressional waves include sound waves and seismic waves.