answersLogoWhite

0

An induced electric field is a field that is created in a region in response to a changing magnetic field. According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electric field in the surrounding space. This phenomenon is the basis for the operation of devices such as generators and Transformers.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What is the direction of the induced electric field?

The direction of the induced electric field is perpendicular to the change in magnetic field.


Why does the electric field inside a dielectric decrease when it is placed in an external electric field?

The net electric field inside a dielectric decreases due to polarization. The external electric field polarizes the dielectric and an electric field is produced due to this polarization. This internal electric field will be opposite to the external electric field and therefore the net electric field inside the dielectric will be less.


Conservative Nature of induced electric field?

The induced electric field tends to oppose the change in magnetic flux that causes it, in accordance with Faraday's law of electromagnetic induction. This conservative nature of the induced electric field ensures that the total electromagnetic field obeys the principle of conservation of energy. This property is fundamental for understanding electromagnetic phenomena and plays a crucial role in various applications, such as transformers and electric generators.


How are motion induced electric fields and motional emf related in the context of electromagnetic induction?

Motion-induced electric fields and motional emf are related in the context of electromagnetic induction because both phenomena involve the generation of an electric field due to a changing magnetic field. When a conductor moves through a magnetic field, it experiences a motional emf, which is the voltage induced in the conductor. This motional emf is caused by the motion-induced electric fields that are generated in the conductor as a result of the changing magnetic field. In essence, motion-induced electric fields lead to the generation of motional emf through electromagnetic induction.


How is the induced surface charge affected by external electric fields?

The induced surface charge is influenced by external electric fields. When an external electric field is applied, it can attract or repel charges on the surface, causing the distribution of charges to change. This can result in an increase or decrease in the induced surface charge depending on the direction and strength of the external electric field.

Related Questions

What is the direction of the induced electric field?

The direction of the induced electric field is perpendicular to the change in magnetic field.


What is induced by an electric field that changes with time?

A magnetic field


Why does the electric field inside a dielectric decrease when it is placed in an external electric field?

The net electric field inside a dielectric decreases due to polarization. The external electric field polarizes the dielectric and an electric field is produced due to this polarization. This internal electric field will be opposite to the external electric field and therefore the net electric field inside the dielectric will be less.


Explain the term 'Induced Electric Field'?

plz plz answer this question


Conservative Nature of induced electric field?

The induced electric field tends to oppose the change in magnetic flux that causes it, in accordance with Faraday's law of electromagnetic induction. This conservative nature of the induced electric field ensures that the total electromagnetic field obeys the principle of conservation of energy. This property is fundamental for understanding electromagnetic phenomena and plays a crucial role in various applications, such as transformers and electric generators.


How are motion induced electric fields and motional emf related in the context of electromagnetic induction?

Motion-induced electric fields and motional emf are related in the context of electromagnetic induction because both phenomena involve the generation of an electric field due to a changing magnetic field. When a conductor moves through a magnetic field, it experiences a motional emf, which is the voltage induced in the conductor. This motional emf is caused by the motion-induced electric fields that are generated in the conductor as a result of the changing magnetic field. In essence, motion-induced electric fields lead to the generation of motional emf through electromagnetic induction.


How is the induced surface charge affected by external electric fields?

The induced surface charge is influenced by external electric fields. When an external electric field is applied, it can attract or repel charges on the surface, causing the distribution of charges to change. This can result in an increase or decrease in the induced surface charge depending on the direction and strength of the external electric field.


Electric current is induced when?

electric current is induced when a conductor (such as a wire) moves through a magnetic field or when there is a change in the magnetic field surrounding a conductor. This phenomenon is known as electromagnetic induction, discovered by Michael Faraday in the 1830s.


What relates a magnetic field changing with time in a region of space to the electric field induced in that region of space?

A changing magnetic field in a region of space induces an electric field in that region through electromagnetic induction, as described by Faraday's law of electromagnetic induction. This induced electric field is generated whenever the magnetic field changes with time, creating a loop of electric field that can drive current in a conducting medium or induce voltage in a circuit.


What is maxwell's counter part to faradays law?

A magnetic field is induced in an region of space in which and electric field is changing with time.


What is the induced current in the loop when a magnetic field is applied?

When a magnetic field is applied to a loop, it induces an electric current in the loop.


Are induced dipoles permanent?

Induced dipoles are temporary and not permanent. They are created in nonpolar molecules when they are exposed to an electric field, causing the distribution of electrons to shift temporarily, resulting in the formation of a dipole moment. Once the electric field is removed, the induced dipoles disappear.