Gradient of potential energy gives negative force at that point.
The potential energy vs distance graph shows that potential energy decreases as distance increases. This indicates an inverse relationship between potential energy and distance - as distance between objects increases, the potential energy between them decreases.
The potential energy internuclear distance graph shows that potential energy decreases as internuclear distance increases. This indicates an inverse relationship between potential energy and internuclear distance.
The relationship between potential energy, kinetic energy, and speed in a system can be described by the principle of conservation of energy. As potential energy decreases, kinetic energy and speed increase, and vice versa. This relationship demonstrates the interplay between different forms of energy in a system.
The relationship between potential energy and electric potential is that electric potential is a measure of the potential energy per unit charge at a specific point in an electric field. In other words, electric potential is the potential energy that a unit charge would have at that point in the field.
Electricity is a form of energy that can be converted into either potential energy, which is stored energy, or kinetic energy, which is energy of motion. The relationship between electricity and potential or kinetic energy is that electricity can be used to create or transfer these types of energy.
The potential energy vs distance graph shows that potential energy decreases as distance increases. This indicates an inverse relationship between potential energy and distance - as distance between objects increases, the potential energy between them decreases.
The potential energy internuclear distance graph shows that potential energy decreases as internuclear distance increases. This indicates an inverse relationship between potential energy and internuclear distance.
The relationship between potential energy, kinetic energy, and speed in a system can be described by the principle of conservation of energy. As potential energy decreases, kinetic energy and speed increase, and vice versa. This relationship demonstrates the interplay between different forms of energy in a system.
The relationship between potential energy and electric potential is that electric potential is a measure of the potential energy per unit charge at a specific point in an electric field. In other words, electric potential is the potential energy that a unit charge would have at that point in the field.
The potential energy vs distance graph shows how the potential energy of the system changes as the distance between objects in the system changes. It reveals that there is a relationship between potential energy and distance, where potential energy increases as distance decreases and vice versa.
Electricity is a form of energy that can be converted into either potential energy, which is stored energy, or kinetic energy, which is energy of motion. The relationship between electricity and potential or kinetic energy is that electricity can be used to create or transfer these types of energy.
The relationship between height and potential energy is directly proportional when mass is held constant. As an object is raised to a higher height, its potential energy increases. This relationship is given by the equation: potential energy = mass x gravity x height.
Direct (double the height to double the potential energy).
In a system, kinetic energy is the energy of motion, while potential energy is stored energy. The relationship between them is that as kinetic energy increases, potential energy decreases, and vice versa. This is because energy is constantly being converted between the two forms within the system.
The relationship between kinetic and potential energy in a moving object is that as the object moves, its potential energy decreases while its kinetic energy increases. Kinetic energy is the energy of motion, while potential energy is stored energy that can be converted into kinetic energy as the object moves.
The relationship between height and potential energy is that the potential energy of an object increases as its height above the ground increases. This is because the higher an object is lifted, the more gravitational potential energy it has due to its increased distance from the Earth's surface.
Both are mechanical force.