For the Human Body, 124 mph (200 KPH).
In that case, the object is said to have achieved terminal speed.
The speed at terminal velocity depends on the mass and shape of the object. For example, a sheet of paper will have a very low terminal velocity; the terminal velocity for a man will be much higher.
The difference between terminal speed and terminal velocity is really simple. Terminal speed can be used to refer to the maximum speed an object can reach before factors like friction prevent anymore speed to be gained. Terminal velocity, however, generally refers to the rate at which this speed was gained.
Terminal velocity is the speed an object reaches when the force of gravity is balanced by the force of air resistance. At terminal velocity, the object no longer accelerates and falls at a constant speed. This speed varies depending on the mass, size, and shape of the object.
Yes, but only in free-fall. If I'm driving at 60 mph, I have a constant velocity, but it's not my "terminal velocity" in the sense that there is no limit to my acceleration caused by air friction. But yes, an object in free-fall reaches its terminal velocity when its velocity stops increasing (acceleration=0).
In that case, the object is said to have achieved terminal speed.
The speed at terminal velocity depends on the mass and shape of the object. For example, a sheet of paper will have a very low terminal velocity; the terminal velocity for a man will be much higher.
The difference between terminal speed and terminal velocity is really simple. Terminal speed can be used to refer to the maximum speed an object can reach before factors like friction prevent anymore speed to be gained. Terminal velocity, however, generally refers to the rate at which this speed was gained.
terminal velocity
Terminal velocity is the speed an object reaches when the force of gravity is balanced by the force of air resistance. At terminal velocity, the object no longer accelerates and falls at a constant speed. This speed varies depending on the mass, size, and shape of the object.
Yes, but only in free-fall. If I'm driving at 60 mph, I have a constant velocity, but it's not my "terminal velocity" in the sense that there is no limit to my acceleration caused by air friction. But yes, an object in free-fall reaches its terminal velocity when its velocity stops increasing (acceleration=0).
Terminal velocity if it has reached its top speed. Or obviously constant speed.
No, terminal velocity does not depend on the mass of the object. Terminal velocity is the maximum speed an object can reach when the force of gravity is balanced by the force of drag. This means that all objects, regardless of their mass, will eventually reach the same terminal velocity in a given medium.
increase- your speed will increase until terminal velocity is reached. From there it will stay constant.
The only two ways to increase the speed of an object beyond its terminal velocity is to either reduce its drag, or increase the force causing it to fall. The speed of a falling object can be accelerated beyond terminal velocity, but absent a continuing force, and given enough time, it will eventually slow down to its terminal velocity.
Terminal velocity for a kangaroo penis is not a meaningful concept, as terminal velocity refers to the constant speed that a freely falling object eventually reaches when the resistance of the medium it is moving through equals the force of gravity. Kangaroo penises do not fall freely in this manner.
Terminal velocity is the constant speed reached by an object falling through the atmosphere when the force of gravity is balanced by air resistance.