answersLogoWhite

0

proportional to 1/r

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

Relation between linear velocity and angular velocity?

Linear velocity is directly proportional to the radius at which the object is moving and the angular velocity of the object. The equation that represents this relationship is v = rω, where v is the linear velocity, r is the radius, and ω is the angular velocity. As the angular velocity increases, the linear velocity also increases, given the same radius.


What is relation between linear velocity and angular velocity?

Linear velocity is directly proportional to the radius of the rotating object and the angular velocity. This relationship is described by the equation v = ω * r, where v is the linear velocity, ω is the angular velocity, and r is the radius.


Relation between linear speed and angular velocity?

Linear speed is directly proportional to the radius of rotation and the angular velocity. The equation that relates linear speed (v), angular velocity (ω), and radius (r) is v = rω. This means that the linear speed increases as either the angular velocity or the radius of rotation increases.


Relation between angular velocity and linear velocity?

Angular velocity is the rate of change of an object's angular position with respect to time, while linear velocity is the rate of change of an object's linear position with respect to time. The relationship between angular velocity and linear velocity depends on the distance of the object from the axis of rotation. For an object rotating around a fixed axis, the linear velocity is equal to the angular velocity multiplied by the radius of the rotation.


What is the relationship between angular velocity and tangential velocity in a rotating object?

Angular velocity and tangential velocity are related in a rotating object by the equation v r, where v is the tangential velocity, r is the radius of the object, and is the angular velocity. This means that the tangential velocity is directly proportional to the radius and the angular velocity of the object.

Related Questions

Relation between linear velocity and angular velocity?

Linear velocity is directly proportional to the radius at which the object is moving and the angular velocity of the object. The equation that represents this relationship is v = rω, where v is the linear velocity, r is the radius, and ω is the angular velocity. As the angular velocity increases, the linear velocity also increases, given the same radius.


What is relation between linear velocity and angular velocity?

Linear velocity is directly proportional to the radius of the rotating object and the angular velocity. This relationship is described by the equation v = ω * r, where v is the linear velocity, ω is the angular velocity, and r is the radius.


Relation between linear speed and angular velocity?

Linear speed is directly proportional to the radius of rotation and the angular velocity. The equation that relates linear speed (v), angular velocity (ω), and radius (r) is v = rω. This means that the linear speed increases as either the angular velocity or the radius of rotation increases.


Relation between angular velocity and linear velocity?

Angular velocity is the rate of change of an object's angular position with respect to time, while linear velocity is the rate of change of an object's linear position with respect to time. The relationship between angular velocity and linear velocity depends on the distance of the object from the axis of rotation. For an object rotating around a fixed axis, the linear velocity is equal to the angular velocity multiplied by the radius of the rotation.


What is the relationship between angular velocity and tangential velocity in a rotating object?

Angular velocity and tangential velocity are related in a rotating object by the equation v r, where v is the tangential velocity, r is the radius of the object, and is the angular velocity. This means that the tangential velocity is directly proportional to the radius and the angular velocity of the object.


What is the relationship between velocity, omega, and radius in circular motion?

In circular motion, velocity is directly proportional to the radius and angular velocity (omega). This means that as the radius or angular velocity increases, the velocity of the object in circular motion also increases.


What is the relationship between the radius and the velocity of a rotating object?

The velocity of a rotating object is directly proportional to its radius. As the radius increases, the velocity also increases to maintain angular momentum. Mathematically, this relationship is described by the equation v = rω, where v is the linear velocity, r is the radius, and ω is the angular velocity.


What is the relationship between angular velocity and linear velocity in a rotating object?

The relationship between angular velocity and linear velocity in a rotating object is that they are directly proportional. This means that as the angular velocity of the object increases, the linear velocity also increases. The formula to calculate the linear velocity is linear velocity angular velocity x radius of rotation.


What is the relationship between velocity (v), angular velocity (w), and radius (r) in the context of rotational motion?

In rotational motion, velocity (v) is related to angular velocity (w) and radius (r) through the equation v w r. This means that the linear velocity of a point on a rotating object is equal to the product of the angular velocity and the distance from the center of rotation (radius).


What is the relationship between the velocity (v) and the radius (r) of rotation in the equation vrw?

The relationship between velocity (v) and radius (r) of rotation in the equation v r is that the velocity of an object in circular motion is directly proportional to the radius of the circle and the angular velocity () of the object. This means that as the radius of rotation increases, the velocity of the object also increases, assuming the angular velocity remains constant.


How can one calculate angular velocity from linear velocity?

To calculate angular velocity from linear velocity, you can use the formula: Angular velocity Linear velocity / Radius. This formula relates the speed of an object moving in a circular path (angular velocity) to its linear speed and the radius of the circle it is moving in.


How can one find the linear velocity from angular velocity?

To find the linear velocity from angular velocity, you can use the formula: linear velocity angular velocity x radius. This formula relates the speed of an object moving in a circle (angular velocity) to its speed in a straight line (linear velocity) based on the radius of the circle.