16 ft./sec./sec.
Acceleration due to gravity means the force due to weight of an object which increases due to the gravitational pull of the earth.
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
The torque due to gravity on the disk is the force of gravity multiplied by the distance from the center of the disk to where the force is applied.
The force of gravity on an object is determined by its mass and the acceleration due to gravity. The formula to calculate this force is: force of gravity = mass of the object × acceleration due to gravity. On Earth, the acceleration due to gravity is approximately 9.81 m/s^2.
acceleration has everything to do with gravity
Local accelleration or gravitation creates force. Mass remains constant despite presence or absence of accelleration or gravity.
Yes.
No - the gravity of Earth is due to its mass.No - the gravity of Earth is due to its mass.No - the gravity of Earth is due to its mass.No - the gravity of Earth is due to its mass.
Acceleration due to gravity means the force due to weight of an object which increases due to the gravitational pull of the earth.
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
A lift in free fall is the same as a lift with no gravity (e.g. in space), i.e. accelleration due to gravity, g = 0 ms^-2. Now your intuition should tell you what's going to happen but even if it doesn't you can plug this value into your equation for the pendulum's period to find out what happens.
Going back to the equation F=m·a you can see that if the force changes but the mass does not, accelleration will change as well. If mass and force do not change, accelleration will be constant.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
The torque due to gravity on the disk is the force of gravity multiplied by the distance from the center of the disk to where the force is applied.
No. Earth's gravity is due to Earth's own mass. The moon has its own gravity due to its mass, but that gravity is much weaker than Earth's.
The acceleration due to gravity on Mercury is approximately 3.7 m/s², which is about 38% of the acceleration due to gravity on Earth. This is due to Mercury's smaller mass and radius compared to Earth.