answersLogoWhite

0

Torque is the measure of the rotational force applied to an object, causing it to rotate around a pivot point. Moment of inertia, on the other hand, is a measure of an object's resistance to changes in its rotational motion. Torque depends on force and the distance from the pivot point, while moment of inertia depends on an object's mass distribution and shape.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the moment of inertia times alpha in the context of rotational motion?

The relationship between the moment of inertia and angular acceleration (alpha) in rotational motion is described by the equation I, where represents the torque applied to an object, I is the moment of inertia, and is the angular acceleration. This equation shows that the torque applied to an object is directly proportional to its moment of inertia and angular acceleration.


What is the difference between moment of inertia and moment of force?

Moment of inertia is a measure of an object's resistance to changes in its rotational motion, based on its mass distribution. Moment of force, also known as torque, is a measure of the rotational force applied to an object to produce rotational motion. In essence, moment of inertia describes an object's inherent property, while moment of force describes an external force acting on an object.


How to calculate angular acceleration from torque?

To calculate angular acceleration from torque, use the formula: angular acceleration torque / moment of inertia. Torque is the force applied to an object to make it rotate, and moment of inertia is a measure of an object's resistance to changes in its rotation. By dividing the torque by the moment of inertia, you can determine the angular acceleration of the object.


What is the constant of proportionality between torque and angular acceleration?

The rotating object's moment of inertia. Similar to Newton's Second Law, commonly quoted as "force = mass x acceleration", there is an equivalent law for rotational movement: "torque = moment of inertia x angular acceleration". The moment of inertia depends on the rotating object's mass and its exact shape - you can even have a different moment of inertia for the same shape, if the axis of rotation is changed. If you use SI units, and radians for angles (and therefore radians/second2 for angular acceleration), no further constants of proportionality are required.


What one of the following does not have some dimensions?

Moment of inertia and torque

Related Questions

What is the relationship between the moment of inertia times alpha in the context of rotational motion?

The relationship between the moment of inertia and angular acceleration (alpha) in rotational motion is described by the equation I, where represents the torque applied to an object, I is the moment of inertia, and is the angular acceleration. This equation shows that the torque applied to an object is directly proportional to its moment of inertia and angular acceleration.


What is the difference between moment of inertia and moment of force?

Moment of inertia is a measure of an object's resistance to changes in its rotational motion, based on its mass distribution. Moment of force, also known as torque, is a measure of the rotational force applied to an object to produce rotational motion. In essence, moment of inertia describes an object's inherent property, while moment of force describes an external force acting on an object.


How to calculate angular acceleration from torque?

To calculate angular acceleration from torque, use the formula: angular acceleration torque / moment of inertia. Torque is the force applied to an object to make it rotate, and moment of inertia is a measure of an object's resistance to changes in its rotation. By dividing the torque by the moment of inertia, you can determine the angular acceleration of the object.


Can you find torque by time in moment of inertia?

Comparing linear and circular motion we can see that moment of inertia represents mass and torque represents force. So the product change in the circular momentum per unit time is torque. Circular momentum is the product of moment of inertia and circular velocity.


What is the constant of proportionality between torque and angular acceleration?

The rotating object's moment of inertia. Similar to Newton's Second Law, commonly quoted as "force = mass x acceleration", there is an equivalent law for rotational movement: "torque = moment of inertia x angular acceleration". The moment of inertia depends on the rotating object's mass and its exact shape - you can even have a different moment of inertia for the same shape, if the axis of rotation is changed. If you use SI units, and radians for angles (and therefore radians/second2 for angular acceleration), no further constants of proportionality are required.


What one of the following does not have some dimensions?

Moment of inertia and torque


How can one determine the angular acceleration of an object by using the torque applied to it?

To determine the angular acceleration of an object using the torque applied to it, you can use the formula: angular acceleration torque / moment of inertia. Torque is the rotational force applied to an object, and moment of inertia is a measure of how an object's mass is distributed around its axis of rotation. By dividing the torque by the moment of inertia, you can calculate the object's angular acceleration.


Mass moment of inertia of a flywheel?

define moment of inertia§ I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin after being applied a given force).


What is the relationship between the mass of a pulley and the torque it generates in a mechanical system?

The relationship between the mass of a pulley and the torque it generates in a mechanical system is that the greater the mass of the pulley, the more torque it can generate. This is because the mass of the pulley affects the moment of inertia, which is a measure of how difficult it is to change the rotational motion of an object. A heavier pulley will have a higher moment of inertia, requiring more torque to accelerate or decelerate it.


Calculate acceleration by torque and moment of inertia?

The acceleration of an object can be calculated using the formula: ( a = \frac{T}{I} ), where ( a ) is the acceleration, ( T ) is the torque applied, and ( I ) is the moment of inertia of the object. The moment of inertia is a measure of an object's resistance to changes in its rotational motion, and is specific to the object's shape and mass distribution.


Is angular acceleration and torque per unit moment of inertia are equal?

In magnitude, yes. But that's a strange way of expressing it, since the angular acceleration is the product/result of the torque. Your statement seems in a way to confuse the dependent and independent variables. But the numbers are sound. L = Iα so L/I =α sure enough. It's the rotational analog of F = MA. The analogous statement would be to say that linear acceleration is equal to force per unit of mass. Relatively harmless, I guess.


What is inertia torque?

Inertia torque an imaginary torque, which when applied upon a rigid body, brings it in an equilibrium position. Its magnitude is equal to accelerating couple, but opposite in direction.T1 = -IαwhereI = mass moment of inertia of body andα = angular acceleration