It is named as buoyant force which always acts in the upward direction ie opposite to the weight of the body. So actual weight appears to be reduced. Hence apparent weight loss
Submerged "out-of-water". That is not possible. It is either submerged or it is out of water. Even when an object is submerger or partically submerged it will not weigh less. The physical characteristics (weight) of the object cannot be changed. The object, when placed in water will displace a certain amount of water and the object will float if the weight of the displaced water is more that the weight of the object. The object will then sink if it weighted more that the weight of the water it displaces. That said, the actual weight of the object doesnt change but if a scale were attached to it while hanging in air, it would read greater that when the object is floating or submerged in water.
When an object is immersed in water, it means it is completely surrounded or covered by the water.
Yes, the water pressure is greatest at the sides of a submerged object because the water depth is greatest there, resulting in more water weight pushing down. The pressure decreases as you move towards the top of the object because there is less water weight above pushing down.
a submerged object displaces liquid which is equal to its volume
The milliliters of a completely submerged object is equal to the milliliters of water displaced. This is in line with Archimedes' principle, which states that the volume of water displaced by an object is equal to the volume of the object submerged.
Submerged "out-of-water". That is not possible. It is either submerged or it is out of water. Even when an object is submerger or partically submerged it will not weigh less. The physical characteristics (weight) of the object cannot be changed. The object, when placed in water will displace a certain amount of water and the object will float if the weight of the displaced water is more that the weight of the object. The object will then sink if it weighted more that the weight of the water it displaces. That said, the actual weight of the object doesnt change but if a scale were attached to it while hanging in air, it would read greater that when the object is floating or submerged in water.
When an object is immersed in water, it means it is completely surrounded or covered by the water.
The buoyant force acts in the opposite direction of gravity, pushing an object upwards when it is submerged in a fluid. This force is proportional to the volume of the displaced fluid by the object and helps objects float or rise in a fluid, enabling objects to achieve buoyancy.
Yes, the water pressure is greatest at the sides of a submerged object because the water depth is greatest there, resulting in more water weight pushing down. The pressure decreases as you move towards the top of the object because there is less water weight above pushing down.
a submerged object displaces liquid which is equal to its volume
The milliliters of a completely submerged object is equal to the milliliters of water displaced. This is in line with Archimedes' principle, which states that the volume of water displaced by an object is equal to the volume of the object submerged.
The buoyant force on any object in water is equal to the weight of the displaced water, regardless of how much of the object is submerged.
A sinker is necessary to determine the lifting effect of water because it helps to counteract the buoyant force exerted by the water on the object. By adding a sinker, you can measure the force required to keep the object submerged, which allows you to calculate the buoyant force acting on the object.
volume of water, causing an equal volume of water to be pushed aside or displaced. This displacement of water creates a buoyant force that acts in the opposite direction to the force of gravity, helping to support the object in the water.
The buoyant force on a fully submerged object is equal to the weight of the water displaced. In fact, that's also true of a floating object.
Overflow can measure the volume of water displaced by an object when it is submerged. By measuring the overflow, one can determine the volume of the object, as it is equal to the volume of water it displaces.
An object will appear to lose weight when completely submerged in water due to the buoyant force acting on it. This force is equal to the weight of the water displaced by the object, causing it to feel lighter in water compared to in air.