answersLogoWhite

0

The photon energy of 1022 Hz is 4.22664452E-12 electron volts.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Physics

Find the energy of a photon whose frequency is 5x10 12 Hz?

The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.


What is the energy of a photon of red light that has a frequency of 4.48x1014 Hz?

The energy of a photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the photon. Plugging in the values, the energy of a photon of red light with a frequency of 4.48 x 10^14 Hz is approximately 2.98 x 10^-19 Joules.


How much energy does a photon of frequency 6 multiply 1012 Hz have?

The energy of a photon is given by E = hf, where h is the Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz is approximately 3.98 x 10^-21 Joules.


How much energy does a photon of frequency 6x10 12 Hz have?

The energy of a photon is given by the formula E = hf, where h is Planck's constant (6.626 x 10^-34 J s) and f is the frequency of the photon. So, for a photon with a frequency of 6 x 10^12 Hz, the energy would be approximately 3.98 x 10^-21 Joules.


What is the frequency and energy of a photon with a wavelength of 488.3 nm?

The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.

Related Questions

What is the frequency of a photon having an energy of 3x10-15 eV?

The frequecy is o,74958 Hz.


Find the energy of a photon whose frequency is 5x10 12 Hz?

The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.


How to Put these photons in order of increasing energy?

To arrange photons in order of increasing energy, you can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. Photons with higher frequency will have higher energy. So, simply compare the frequencies of the photons to determine their energy order.


What is the energy of a photon of red light that has a frequency of 4.48x1014 Hz?

The energy of a photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the photon. Plugging in the values, the energy of a photon of red light with a frequency of 4.48 x 10^14 Hz is approximately 2.98 x 10^-19 Joules.


How much energy does a photon of frequency 6 multiply 1012 Hz have?

The energy of a photon is given by E = hf, where h is the Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz is approximately 3.98 x 10^-21 Joules.


How much energy does a photon of frequency 6x10 12 Hz have?

The energy of a photon is given by the formula E = hf, where h is Planck's constant (6.626 x 10^-34 J s) and f is the frequency of the photon. So, for a photon with a frequency of 6 x 10^12 Hz, the energy would be approximately 3.98 x 10^-21 Joules.


If the photon has a frequency of 4 x 1015 Hz how did the energy of the electron change?

If the change in energy of electron is totally exhibited as a photon then the energy = h times frequency. h = 6.626 x 10 to -34 J s Simply multiply h and frequency you would get the energy in joule


What is the frequency and energy of a photon with a wavelength of 488.3 nm?

The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.


What is the energy of a photon that emits a light of frequency energy 7.211014 Hz?

The energy of a photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the light. Substituting the given frequency of 7.211014 Hz into the equation, we find that the energy of the photon is approximately 4.79 x 10^-33 J.


What is the approximate energy of a photon having a frequency of 4 107 hz?

The energy of a photon can be calculated using the formula E = hf, where h is Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 4 x 10^7 Hz is approximately 2.65 x 10^-26 Joules.


How much energy does a photon of frequency 6 and times 1012 Hz have?

The energy of a photon can be calculated using the equation E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz would be approximately 3.98 x 10^-21 Joules.


What is the frequency of a photon with an energy of 3.38 10-19?

5.10 x 10^14 hz