The energy of each photon at that frequency is ... (Planck's Konstant) x (frequency) =
(6.63 x 10-34) x (8 x 1012) =
5.304 x 10-21 joule
The total energy in a wave packet at that frequency is (that number) times the
total number of photons radiated from the source. The more energy you want to
radiate, the brighter source you use, and the longer you keep it turned on.
The energy of a photon is given by E = hf, where h is the Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz is approximately 3.98 x 10^-21 Joules.
The energy of a photon is given by the equation E = hf, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz would be approximately 3.98 x 10^-21 Joules.
The energy of a photon can be calculated using the equation E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz would be approximately 3.98 x 10^-21 Joules.
The infrared portion of the electromagnetic spectrum is a range of wavelengths longer than visible light and shorter than microwaves. It is often used in applications such as night vision, thermal imaging, and remote sensing.
Frequency = 6.00 x 10-14 Hz Wavelength = (speed) /(frequency) -- If this wave is sound in air, then the speed is 343 m/s and the wavelength is 5.72 x 1012 kilometers. -- If this is an electromagnetic wave in vacuum, then the speed is 299,792,458 m/s and the wavelength is 5 x 1018 kilometers.
E = hf, where E is energy in Joules, h is Planck's constant, 6.626 x 10-34 J•s, and f is frequency in /s or Hz.E = (6.626 x 10-34J•s)(8 x 1012 Hz) = 5 x 10-21J
Divide the speed of light (300 x 106 meter/second) by the frequency. The answer will be in meters.
The energy of a photon is given by E = hf, where h is the Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz is approximately 3.98 x 10^-21 Joules.
The energy of a photon is given by the equation E = hf, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz would be approximately 3.98 x 10^-21 Joules.
The energy of a photon can be calculated using the equation E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency of the photon. Plugging in the values, the energy of a photon with a frequency of 6 x 10^12 Hz would be approximately 3.98 x 10^-21 Joules.
The infrared portion of the electromagnetic spectrum is a range of wavelengths longer than visible light and shorter than microwaves. It is often used in applications such as night vision, thermal imaging, and remote sensing.
Frequency = 6.00 x 10-14 Hz Wavelength = (speed) /(frequency) -- If this wave is sound in air, then the speed is 343 m/s and the wavelength is 5.72 x 1012 kilometers. -- If this is an electromagnetic wave in vacuum, then the speed is 299,792,458 m/s and the wavelength is 5 x 1018 kilometers.
1012
Frequencies and wavelengths (APEX)
percent of 1012 = 101200%= 1012 * 100%= 101200%
Electrical charges in motion produce emission of electromagnetic waves, like radio waves we use for cell phones and radio programs, millimeter waves we use in radars, visible light, X-rays and gamma rays. All the above forms of electromagnetic radiation differs from their frequency, in particular I have listed them in order of increasing frequency (and decreasing wavelength). When a real wave is emitted a set of frequencies are emitted, almost never a single frequency. Under a fundamental point of view this is due to the quantum mechanical indetermination principle. In practical cases, quite more important causes are the fluctuations in the speed of moving charges and the fact that their trajectory is not purely linear. The set of frequencies that forms a practical wave is called electromagnetic spectrum of that wave. The overall frequency axes is divided in zone, as listed below Region Wavelength (Angstroms) Wavelength (centimeters) Frequency (Hz) Energy (eV) Radio > 109 > 10 < 3 x 109 < 10-5 Microwave 109 - 106 10 - 0.01 3 x 109 - 3 x 1012 10-5 - 0.01 Infrared 106 - 7000 0.01 - 7 x 10-5 3 x 1012 - 4.3 x 1014 0.01 - 2 Visible 7000 - 4000 7 x 10-5 - 4 x 10-5 4.3 x 1014 - 7.5 x 1014 2 - 3 Ultraviolet 4000 - 10 4 x 10-5 - 10-7 7.5 x 1014 - 3 x 1017 3 - 103 X-Rays 10 - 0.1 10-7 - 10-9 3 x 1017 - 3 x 1019 103 - 105 Gamma Rays < 0.1 < 10-9 > 3 x 1019 > 105 Sub-zones are also defined. Since the energy of a photon of an electromagnetic wave at a certain frequency f is proportional to the frequency by the equation Energy= h f where h is the Plank constant, higher the frequency, higher the phonons energy as indicated in the table (the energy of one electronvolt eV is the energy aquired by an electron when accelerated by a potential of one volt and it is equal to 1.6×10−19 joule).
1012 pennies is £10.12. If you meant 1012 this is 1010 or 10,000,000,000 pounds