The energy of an electromagnetic wave can be calculated using the formula E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 Js), and f is the frequency. Plugging in the values, we find that the energy of a wave with a frequency of 8x10^12 Hz is approximately 5.301 x 10^-21 J.
The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy.
The energy of an electromagnetic wave depends on its frequency. The energy is directly proportional to the frequency of the wave, meaning higher frequency waves have more energy.
The energy of an electromagnetic wave depends on its frequency.
The energy of an electromagnetic wave is directly proportional to its frequency. The energy of a wave with a frequency of 8 times 10 Hz would be 8 times the energy of a wave with a frequency of 1 Hz.
As the frequency of an electromagnetic wave increases, the energy of the wave also increases. This is because the energy of an electromagnetic wave is directly proportional to its frequency, according to Planck's equation (E = hf), where E is energy, h is Planck's constant, and f is frequency.
The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy.
The energy of an electromagnetic wave depends on its frequency.
The energy of an electromagnetic wave depends on its frequency. The energy is directly proportional to the frequency of the wave, meaning higher frequency waves have more energy.
The energy of an electromagnetic wave is directly proportional to its frequency. The energy of a wave with a frequency of 8 times 10 Hz would be 8 times the energy of a wave with a frequency of 1 Hz.
As the frequency of an electromagnetic wave increases, the energy of the wave also increases. This is because the energy of an electromagnetic wave is directly proportional to its frequency, according to Planck's equation (E = hf), where E is energy, h is Planck's constant, and f is frequency.
As the wavelength of an electromagnetic wave decreases, the frequency of the wave increases. This means that the energy carried by the wave also increases, as energy is directly proportional to frequency. Therefore, shorter wavelength corresponds to higher frequency and energy in an electromagnetic wave.
The energy of an electromagnetic wave is determined by its frequency. The higher the frequency of the wave, the higher the energy it carries. This relationship is described by the equation E=hf, where E is energy, h is the Planck constant, and f is frequency.
Frequency
Frequency
As the frequency of an electromagnetic wave increases, the energy of the wave increases. This is because energy is directly proportional to the frequency of the wave according to Planck's equation (E=hf), where h is Planck's constant.
The frequency of the electromagnetic wave determines the amount of energy it carries.
There is no upper limit to how much energy (and frequency) an electromagnetic wave can have. The highest frequency waves are called gamma radiation.There is no upper limit to how much energy (and frequency) an electromagnetic wave can have. The highest frequency waves are called gamma radiation.There is no upper limit to how much energy (and frequency) an electromagnetic wave can have. The highest frequency waves are called gamma radiation.There is no upper limit to how much energy (and frequency) an electromagnetic wave can have. The highest frequency waves are called gamma radiation.