answersLogoWhite

0

(AMA / IMA)100 Where AMA represents the actual mechanical advantage and IMA represents the Ideal Mechanical advantage.

AMA = Fr/Fe where Fr equals the force of the resistance from the fulcrum, and Fe

equals the force of the effort.

IMA = De/Dr where De equals the Distance of the effort from the fulcrum and Dr

equals the distance of the resistance from the fulcrum

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

What is the efficiency formula of lever?

The efficiency of a lever can be calculated using the formula: Efficiency = (output force × output distance) / (input force × input distance) * 100%. It represents the ratio of the output work done by the lever compared to the input work applied to the lever.


What is the mechanical advantage formula for a 1st class lever?

The mechanical advantage formula for a 1st class lever is calculated by dividing the distance from the fulcrum to the input force by the distance from the fulcrum to the output force. Mathematically, M.A = input arm length / output arm length.


How do you calculate effort force in lever system?

To calculate effort force in a lever system, you can use the formula: Load Force x Load Distance = Effort Force x Effort Distance. This formula is based on the principle of conservation of energy in a lever system, where the product of the load force and load distance is equal to the product of the effort force and effort distance. By rearranging the formula, you can solve for the effort force by dividing the product of Load Force and Load Distance by the Effort Distance.


How much force to lift 200Kg by 10mm with a 0.50m bar?

To calculate the force required to lift 200kg by 10mm using a lever arm of 0.50m, you can use the formula for a lever: Force x Lever arm = Weight x Distance. Rearranging the formula: Force = (Weight x Distance) / Lever arm. Substituting the values, the force required would be (200kg x 10mm) / 0.50m = 4000 N.


What is the formula in getting te effort force in lever?

The formula to calculate effort force in a lever is Effort Force = Load Force x Load Arm Length / Effort Arm Length. This formula takes into account the load force being lifted, the length of the load arm, and the length of the effort arm to determine the amount of effort force needed to lift the load.

Related Questions

What is the formula for finding weight at simple lever?

a lever has a mechanical advantage of 5 . how heavy an object can the lever move if a person exerts 100N force on the lever?


What is the efficiency formula of lever?

The efficiency of a lever can be calculated using the formula: Efficiency = (output force × output distance) / (input force × input distance) * 100%. It represents the ratio of the output work done by the lever compared to the input work applied to the lever.


What is the formula of MA for lever?

The formula for mechanical advantage (MA) of a lever is given by the ratio of the lengths of the arms on either side of the fulcrum. Specifically, MA = Length of effort arm / Length of resistance arm. This ratio indicates how much the lever amplifies the input force applied to it, allowing a smaller force to lift a larger load.


What is the formula for MA of a lever?

The mechanical advantage (MA) of a lever is calculated using the formula: MA = Length of effort arm / Length of resistance arm. The effort arm is the distance from the fulcrum to where the effort is applied, while the resistance arm is the distance from the fulcrum to the load being moved. This ratio indicates how much the lever amplifies the input force. A higher MA means the lever provides greater force amplification.


What is the mechanical advantage formula for a 1st class lever?

The mechanical advantage formula for a 1st class lever is calculated by dividing the distance from the fulcrum to the input force by the distance from the fulcrum to the output force. Mathematically, M.A = input arm length / output arm length.


How do you calculate effort force in lever system?

To calculate effort force in a lever system, you can use the formula: Load Force x Load Distance = Effort Force x Effort Distance. This formula is based on the principle of conservation of energy in a lever system, where the product of the load force and load distance is equal to the product of the effort force and effort distance. By rearranging the formula, you can solve for the effort force by dividing the product of Load Force and Load Distance by the Effort Distance.


When lever brothers changes the formula of its bar soap to match different countries' water conditions and washing habits this is an example of a?

standardization strategy. Lever Brothers is customizing its product to meet local preferences.


How much force to lift 200Kg by 10mm with a 0.50m bar?

To calculate the force required to lift 200kg by 10mm using a lever arm of 0.50m, you can use the formula for a lever: Force x Lever arm = Weight x Distance. Rearranging the formula: Force = (Weight x Distance) / Lever arm. Substituting the values, the force required would be (200kg x 10mm) / 0.50m = 4000 N.


What is the formula in getting te effort force in lever?

The formula to calculate effort force in a lever is Effort Force = Load Force x Load Arm Length / Effort Arm Length. This formula takes into account the load force being lifted, the length of the load arm, and the length of the effort arm to determine the amount of effort force needed to lift the load.


What is the torque of a force of 17 N with a lever arm of 2.6 m?

The torque can be calculated using the formula: torque = force * lever arm. Therefore, the torque will be 17 N * 2.6 m = 44.2 Nm.


How can you find an object's weight from a lever?

To find an object's weight using a lever, you can use the principle of torque. By measuring the lengths of the lever arms on either side of the fulcrum, along with the distance from the object to the fulcrum, you can calculate the weight of the object. This is typically done using the formula: weight = force x distance.


How do you calculate the work input of a lever?

To calculate the work input of a lever, you can use the formula: work input = effort force x effort distance. The effort force is the force applied to the lever, and the effort distance is the distance the effort force acts over. Multiply these values to find the work input.