You didn't supply enough information to solve this problem. Two formulae are important to solve problems with momentum: (1) the definition of momentum: momentum = mass x velocity. (2) the total momentum (sum of individual momenta) before and after the collision must be the same.
I assume you mean the total MOMENTUM. The momentum depends on the situation. The only thing you can be sure of is that the total momentum after the collision will be the same as the total momentum before the collision. You can often use this to solve problems about collisions.
In a closed system, the total momentum before a collision is equal to the total momentum after the collision. This principle is known as the law of conservation of momentum.
The Law of Conservation of Momentum states that the total momentum of a closed system remains constant before and after a collision. This means that the momentum of an object before a collision is equal to the total momentum of the objects after the collision.
Yes, momentum is conserved in an elastic collision, meaning the total momentum of the system before the collision is equal to the total momentum after the collision.
The law of conservation of momentum states that the total momentum of a closed system before a collision is equal to the total momentum after the collision. This means that the total amount of momentum in the system is conserved, regardless of the type of collision that occurs.
I assume you mean the total MOMENTUM. The momentum depends on the situation. The only thing you can be sure of is that the total momentum after the collision will be the same as the total momentum before the collision. You can often use this to solve problems about collisions.
In a closed system, the total momentum before a collision is equal to the total momentum after the collision. This principle is known as the law of conservation of momentum.
The Law of Conservation of Momentum states that the total momentum of a closed system remains constant before and after a collision. This means that the momentum of an object before a collision is equal to the total momentum of the objects after the collision.
Yes, momentum is conserved in an elastic collision, meaning the total momentum of the system before the collision is equal to the total momentum after the collision.
The law of conservation of momentum states that the total momentum of a closed system before a collision is equal to the total momentum after the collision. This means that the total amount of momentum in the system is conserved, regardless of the type of collision that occurs.
To determine the momentum after a collision, you can use the principle of conservation of momentum. This principle states that the total momentum before a collision is equal to the total momentum after the collision. By calculating the initial momentum of the objects involved in the collision and applying this principle, you can find the momentum after the collision.
The formula is, quite simply, that the momentum before and after the shot is the same. You can assume that the momentum before the shot is zero (because the rifle and the bullet were not moving), so after the shot, the total momentum will also be zero.
conservation of momentum
the law of conservation of momentum, which states that the total momentum in a closed system remains constant before and after a collision. This means that the combined momentum of the two balls after the collision is equal to the momentum of the two balls before the collision.
In a closed system, the total momentum before a collision is equal to the total momentum after a collision, as long as there are no external forces acting on the system. This is due to the principle of conservation of momentum, which states that total momentum is conserved in a closed system.
The total momentum before a collision is equal to the total momentum after the collision, according to the law of conservation of momentum. This means that in a closed system, the sum of the momenta of all objects involved remains constant before and after the collision.
In an elastic collision, both kinetic energy and momentum are conserved. This means that the total kinetic energy before the collision is equal to the total kinetic energy after the collision, and the total momentum before the collision is equal to the total momentum after the collision.