The bike's kinetic energy is 45 joules.
The bicycle traveling at 15 m/s has more kinetic energy because kinetic energy is proportional to the square of the velocity. Since the mass is the same for both bicycles, the one traveling faster will have a greater kinetic energy.
When velocity increases, kinetic energy also increases. Kinetic energy of an object is directly proportional to its velocity squared, so even a small increase in velocity can result in a significant increase in kinetic energy.
The kinetic energy of an object is greatest when its velocity is at its maximum. Kinetic energy is directly proportional to the square of the velocity of the object, so as the velocity increases, the kinetic energy increases exponentially.
Kinetic energy is affected by an object's mass and its velocity. The kinetic energy of an object increases as its mass or velocity increases. Conversely, kinetic energy decreases as mass or velocity decreases.
The kinetic energy of each passenger is different because it depends on their individual mass and velocity. Kinetic energy is directly proportional to an object's mass and the square of its velocity, so passengers with different weights or traveling at different speeds will have different kinetic energies.
The bicycle traveling at 15 m/s has more kinetic energy because kinetic energy is proportional to the square of the velocity. Since the mass is the same for both bicycles, the one traveling faster will have a greater kinetic energy.
All four balls would have the same kinetic energy since kinetic energy is determined by both the mass and velocity of the object. If all four balls have the same mass and velocity, their kinetic energy would be equal.
When velocity increases, kinetic energy also increases. Kinetic energy of an object is directly proportional to its velocity squared, so even a small increase in velocity can result in a significant increase in kinetic energy.
Kinetic energy is affected by an object's mass and its velocity. The kinetic energy of an object increases as its mass or velocity increases. Conversely, kinetic energy decreases as mass or velocity decreases.
The kinetic energy of an object is greatest when its velocity is at its maximum. Kinetic energy is directly proportional to the square of the velocity of the object, so as the velocity increases, the kinetic energy increases exponentially.
Kinetic energy is extra energy resultant of motion. So, a moving vehicle has kinetic energy.
The kinetic energy of each passenger is different because it depends on their individual mass and velocity. Kinetic energy is directly proportional to an object's mass and the square of its velocity, so passengers with different weights or traveling at different speeds will have different kinetic energies.
When you have kinetic energy, you must have a mass and a velocity since kinetic energy is half the product of the mass and the square of the velocity.
The kinetic energy of a jeepney depends on its mass and velocity. The kinetic energy equation is KE = 0.5 * mass * velocity^2. Given the mass and velocity of the jeepney, the kinetic energy can be calculated using this formula.
No. This is because velocity is not a mechanical energy.
If the velocity of an object is doubled, its kinetic energy will increase by a factor of four. Kinetic energy is directly proportional to the square of the velocity, so doubling the velocity results in a fourfold increase in kinetic energy.
Kinetic energy is given by 1/2 M x V2, that is one half mass x velocity squared