The escape velocity from Earth is 11.2 kilometers/second. This is also the speed that an object would reach if it fell onto Earth's surface from far, far away ("infinity" is often used, to simplify calculations) - without air resistance, and without interference by other objects that might also attract it.
The escape velocity from Earth is 11.2 kilometers/second. This is also the speed that an object would reach if it fell onto Earth's surface from far, far away ("infinity" is often used, to simplify calculations) - without air resistance, and without interference by other objects that might also attract it.
The escape velocity from Earth is 11.2 kilometers/second. This is also the speed that an object would reach if it fell onto Earth's surface from far, far away ("infinity" is often used, to simplify calculations) - without air resistance, and without interference by other objects that might also attract it.
The escape velocity from Earth is 11.2 kilometers/second. This is also the speed that an object would reach if it fell onto Earth's surface from far, far away ("infinity" is often used, to simplify calculations) - without air resistance, and without interference by other objects that might also attract it.
The largest velocity reached by a falling object is its terminal velocity. Terminal velocity is the constant maximum velocity reached by an object when the drag force is equal in magnitude and opposite in direction to the gravitational force acting on the object.
When a falling object has reached terminal velocity, it no longer accelerates due to air resistance matching the force of gravity. At this point, the object continues to fall at a constant speed without gaining any additional velocity.
When a falling object has stopped accelerating, it has reached its terminal velocity. At this point, the force of air resistance acting on the object is equal to the force of gravity pulling it downward, resulting in a balanced force and a constant velocity.
The maximum velocity reached by a falling object when air resistance is equal to gravitational force is called terminal velocity. At this point, the net force on the object is zero, resulting in constant velocity. The object will not accelerate further due to the balancing forces.
In that case, it is said to have achieved terminal velocity.
Terminal velocity.
In free fall, when the air resistance is equal to the weight of the falling object, we say that the object has reached ________ velocity.
The largest velocity reached by a falling object is its terminal velocity. Terminal velocity is the constant maximum velocity reached by an object when the drag force is equal in magnitude and opposite in direction to the gravitational force acting on the object.
Zero, by definition.
When a falling object has reached terminal velocity, it no longer accelerates due to air resistance matching the force of gravity. At this point, the object continues to fall at a constant speed without gaining any additional velocity.
When a falling object has stopped accelerating, it has reached its terminal velocity. At this point, the force of air resistance acting on the object is equal to the force of gravity pulling it downward, resulting in a balanced force and a constant velocity.
The maximum velocity reached by a falling object when air resistance is equal to gravitational force is called terminal velocity. At this point, the net force on the object is zero, resulting in constant velocity. The object will not accelerate further due to the balancing forces.
In that case, it is said to have achieved terminal velocity.
Yes, there is a maximum velocity for a falling object, known as terminal velocity. Terminal velocity is reached when the force of air resistance on the falling object is equal to the force of gravity acting on it, resulting in a constant velocity. The terminal velocity varies depending on factors like the object's size, shape, and weight.
The maximum velocity reached by a falling object when the resistance of the medium is equal to the force due to gravity is called terminal velocity. At terminal velocity, the object no longer accelerates and reaches a constant speed as the drag force balances out the force of gravity acting on the object.
terminal velocity
Its called terminal velocity