To find the mass of the boulder, you would need to divide the force (in newtons) by the acceleration due to gravity, which is approximately 9.81 m/s^2. Therefore, the mass of a 980 newton boulder would be about 100 kg.
Yes, a boulder rolling down a hill has mass and velocity. Therefore, it has momentum because p = mv (momentum = mass x velocity).
You could use indirect measurement to find the mass of a large boulder by measuring the displacement of water when the boulder is submerged in a container of water. By measuring the volume of water displaced, you can calculate the mass of the boulder using the principle of buoyancy.
The formula is:weight = mass x gravity.On Earth, "gravity" is about 9.8 meters/second2, equivalent to 9.8 newton/kilogram. That means that each kilogram has a weight of 9.8 newton. On other planets, the "gravity" part will be different. For example, on Mars, the gravity is about 3.7 newton/kilogram. Thus, a man with a mass of 100 kilogram (that's well above the average, but simplifies calculations...) would weigh about 980 newton on Earth, and about 370 newton on Mars.
One indirect method to find the mass of a large boulder is to measure its volume using displacement method in water and then use the average density of similar rocks to calculate the mass. Another method could involve measuring the boulder's dimensions and using a density scale to estimate its mass based on the material it's composed of.
A newton is used to measure force, while a kilogram is used to measure mass. Force is the product of mass and acceleration, according to Newton's second law of motion.
It depends on where the body was weighed. If on the surface of the earth, where the acceleration due to gravity is 9.8 ms-2, the mass would be weight/g = 980 N / 9.8 ms-2 = 100 kilograms
If you go to another planet, your mass will basically remain the same, but your weight will change, depending on the gravity.For example, if you have a mass of 100 kg. (that's overweight, but it simplifies calculations!), on Earth you would weigh 980 Newton. On the Moon, with less gravity, you would weigh about 160 Newton - but your mass would still be 100 kg.
Weight is the force with which gravity attracts an object. It can be calculated as weight = mass x gravity; for example, a person with a mass of 100 kg., on Earth (gravity = 9.8 meter per second square), weighs 980 Newton.
The masses involved are insignificant. You need a much larger mass for the force to be noticeable (without special equipment).In SI units, the gravitational constant, G, is 6.67 x 10-11 m3kg-1s-2. That means that a man with a mass of 100 kg., and a bowl of soup with a mass of 1 kg., at a distance of 1 meter, will attract each other with a force of 6.67 x 10-9 Newton, which can also be written as 0.00000000667 Newton. For comparison, the bowl of soup weighs 9.8 Newton, and the man weighs 980 NewtonThe masses involved are insignificant. You need a much larger mass for the force to be noticeable (without special equipment).In SI units, the gravitational constant, G, is 6.67 x 10-11 m3kg-1s-2. That means that a man with a mass of 100 kg., and a bowl of soup with a mass of 1 kg., at a distance of 1 meter, will attract each other with a force of 6.67 x 10-9 Newton, which can also be written as 0.00000000667 Newton. For comparison, the bowl of soup weighs 9.8 Newton, and the man weighs 980 NewtonThe masses involved are insignificant. You need a much larger mass for the force to be noticeable (without special equipment).In SI units, the gravitational constant, G, is 6.67 x 10-11 m3kg-1s-2. That means that a man with a mass of 100 kg., and a bowl of soup with a mass of 1 kg., at a distance of 1 meter, will attract each other with a force of 6.67 x 10-9 Newton, which can also be written as 0.00000000667 Newton. For comparison, the bowl of soup weighs 9.8 Newton, and the man weighs 980 NewtonThe masses involved are insignificant. You need a much larger mass for the force to be noticeable (without special equipment).In SI units, the gravitational constant, G, is 6.67 x 10-11 m3kg-1s-2. That means that a man with a mass of 100 kg., and a bowl of soup with a mass of 1 kg., at a distance of 1 meter, will attract each other with a force of 6.67 x 10-9 Newton, which can also be written as 0.00000000667 Newton. For comparison, the bowl of soup weighs 9.8 Newton, and the man weighs 980 Newton
Boulder Mass 'The Levitation' - 2013 is rated/received certificates of: USA:Approved
980 N
Yes, a boulder rolling down a hill has mass and velocity. Therefore, it has momentum because p = mv (momentum = mass x velocity).
a boulder
According to Newton's second law of motion force is equivalent to mass times acceleration: F = m * a In this case: Assuming no mistake with the units, the mass of boulder is given as a force the gravity applies on it(weight). If it is Earth's gravitational field, the mass is: m = 2400 N / g = 244.65 kg. Force will be then: F = 244.65 * 12 = 2935.78 N
Boulder Mass 'The Levitation' - 2013 was released on: USA: 1 June 2013 (Los Angeles, California)
980 + 980 + 980 + 980 + 980 + 980 + 980 = 6860
You could use indirect measurement to find the mass of a large boulder by measuring the displacement of water when the boulder is submerged in a container of water. By measuring the volume of water displaced, you can calculate the mass of the boulder using the principle of buoyancy.