rainbow trajectory
Projectile motion is curved because it involves both horizontal and vertical components of motion. The curved path is a result of the object experiencing a constant acceleration due to gravity in the vertical direction, while moving at a constant velocity in the horizontal direction. This combination of horizontal and vertical motions creates the characteristic parabolic trajectory of a projectile.
The horizontal velocity component remains constant because there are no horizontal forces acting on the projectile (assuming no air resistance), so the velocity remains unchanged. The vertical velocity component changes due to the force of gravity, which accelerates the projectile downward, increasing its velocity as it falls.
The velocity of a projectile is considered to be constant when there is no change in speed and direction. This usually occurs in the absence of any external forces, such as air resistance or gravity, that could affect the projectile's motion.
The vertical velocity component changes due to the effect of gravity, which causes acceleration in the downward direction. The horizontal velocity component remains constant because there are no horizontal forces acting on the projectile (assuming air resistance is negligible).
Projectile motion consists of two components: horizontal motion and vertical motion. The horizontal component is constant and unaffected by gravity. The vertical component is influenced by gravity and accelerates downwards. By combining these two components, the path of a projectile can be accurately predicted using equations of motion.
Projectile motion is curved because it involves both horizontal and vertical components of motion. The curved path is a result of the object experiencing a constant acceleration due to gravity in the vertical direction, while moving at a constant velocity in the horizontal direction. This combination of horizontal and vertical motions creates the characteristic parabolic trajectory of a projectile.
The horizontal velocity component remains constant because there are no horizontal forces acting on the projectile (assuming no air resistance), so the velocity remains unchanged. The vertical velocity component changes due to the force of gravity, which accelerates the projectile downward, increasing its velocity as it falls.
The velocity of a projectile is considered to be constant when there is no change in speed and direction. This usually occurs in the absence of any external forces, such as air resistance or gravity, that could affect the projectile's motion.
The vertical velocity component changes due to the effect of gravity, which causes acceleration in the downward direction. The horizontal velocity component remains constant because there are no horizontal forces acting on the projectile (assuming air resistance is negligible).
Projectile motion consists of two components: horizontal motion and vertical motion. The horizontal component is constant and unaffected by gravity. The vertical component is influenced by gravity and accelerates downwards. By combining these two components, the path of a projectile can be accurately predicted using equations of motion.
The horizontal speed of the projectile remains constant as there is no force acting in the horizontal direction to change it. Therefore, the horizontal speed of the projectile after 3 seconds will remain at 4 m/s.
The vertical component of velocity changes due to the influence of gravity, which accelerates the projectile downwards as it moves. The horizontal component of velocity remains constant because there is no horizontal force acting on the projectile, assuming air resistance is negligible.
A projectile will travel on a straight line unless external forces act upon it. Gravity will pull the projectile downward, i.e. affect its vertical velocity component. This is why the projectile will decelerate upwards, reach a maximum elevation, and accelerate back down to earth. The force vector of air resistance points in the opposite direction of motion, slowing the projectile down. For example, If the projectile is going forward and up, air resistance is pushing it backwards (horizontal component) and down (vertical component). Without air resistance, there is no external force acting upon the horizontal velocity component and the projectiles ground speed will stay constant as it gains altitude and falls back down to earth.
Since the velocity is constant due to the fact that there are no external forces acting in the horizontal direction, if you neglect air resistance, therefore, the horizontal velocity of a projectile is constant.
In projectile motion, the only force acting horizontally is the initial velocity, which does not change over time in the absence of external horizontal forces. This means that the acceleration in the horizontal direction is constant and therefore zero because there are no forces causing a change in velocity in that direction.
The horizontal motions of a projectile are independent of its vertical motion. This means that the horizontal velocity remains constant and unaffected by gravity. Additionally, the horizontal distance traveled by a projectile is determined by the initial horizontal velocity and the time of flight.
Horizontal motion is constant when there are no external forces acting on an object in that direction. According to Newton's first law of motion, an object in motion will stay in motion at a constant velocity unless acted upon by an external force. This is why horizontal motion can remain constant when there is no acceleration or deceleration.